Welcome to little lamb

Code » test-hashes » next » tree

[next] / src / blake3-off-sse41.c

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
#include "blake3-off-impl.h"

#include <immintrin.h>

#define DEGREE 4

#define _mm_shuffle_ps2(a, b, c)                                               \
  (_mm_castps_si128(                                                           \
      _mm_shuffle_ps(_mm_castsi128_ps(a), _mm_castsi128_ps(b), (c))))

INLINE __m128i loadu(const uint8_t src[16]) {
  return _mm_loadu_si128((const __m128i *)src);
}

INLINE void storeu(__m128i src, uint8_t dest[16]) {
  _mm_storeu_si128((__m128i *)dest, src);
}

INLINE __m128i addv(__m128i a, __m128i b) { return _mm_add_epi32(a, b); }

// Note that clang-format doesn't like the name "xor" for some reason.
INLINE __m128i xorv(__m128i a, __m128i b) { return _mm_xor_si128(a, b); }

INLINE __m128i set1(uint32_t x) { return _mm_set1_epi32((int32_t)x); }

INLINE __m128i set4(uint32_t a, uint32_t b, uint32_t c, uint32_t d) {
  return _mm_setr_epi32((int32_t)a, (int32_t)b, (int32_t)c, (int32_t)d);
}

INLINE __m128i rot16(__m128i x) {
  return _mm_shuffle_epi8(
      x, _mm_set_epi8(13, 12, 15, 14, 9, 8, 11, 10, 5, 4, 7, 6, 1, 0, 3, 2));
}

INLINE __m128i rot12(__m128i x) {
  return xorv(_mm_srli_epi32(x, 12), _mm_slli_epi32(x, 32 - 12));
}

INLINE __m128i rot8(__m128i x) {
  return _mm_shuffle_epi8(
      x, _mm_set_epi8(12, 15, 14, 13, 8, 11, 10, 9, 4, 7, 6, 5, 0, 3, 2, 1));
}

INLINE __m128i rot7(__m128i x) {
  return xorv(_mm_srli_epi32(x, 7), _mm_slli_epi32(x, 32 - 7));
}

INLINE void g1(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3,
               __m128i m) {
  *row0 = addv(addv(*row0, m), *row1);
  *row3 = xorv(*row3, *row0);
  *row3 = rot16(*row3);
  *row2 = addv(*row2, *row3);
  *row1 = xorv(*row1, *row2);
  *row1 = rot12(*row1);
}

INLINE void g2(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3,
               __m128i m) {
  *row0 = addv(addv(*row0, m), *row1);
  *row3 = xorv(*row3, *row0);
  *row3 = rot8(*row3);
  *row2 = addv(*row2, *row3);
  *row1 = xorv(*row1, *row2);
  *row1 = rot7(*row1);
}

// Note the optimization here of leaving row1 as the unrotated row, rather than
// row0. All the message loads below are adjusted to compensate for this. See
// discussion at https://github.com/sneves/blake2-avx2/pull/4
INLINE void diagonalize(__m128i *row0, __m128i *row2, __m128i *row3) {
  *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(2, 1, 0, 3));
  *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2));
  *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(0, 3, 2, 1));
}

INLINE void undiagonalize(__m128i *row0, __m128i *row2, __m128i *row3) {
  *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(0, 3, 2, 1));
  *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2));
  *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(2, 1, 0, 3));
}

INLINE void compress_pre(__m128i rows[4], const uint32_t cv[8],
                         const uint8_t block[BLAKE3_BLOCK_LEN],
                         uint8_t block_len, uint64_t counter, uint8_t flags) {
  rows[0] = loadu((uint8_t *)&cv[0]);
  rows[1] = loadu((uint8_t *)&cv[4]);
  rows[2] = set4(IV[0], IV[1], IV[2], IV[3]);
  rows[3] = set4(counter_low(counter), counter_high(counter),
                 (uint32_t)block_len, (uint32_t)flags);

  __m128i m0 = loadu(&block[sizeof(__m128i) * 0]);
  __m128i m1 = loadu(&block[sizeof(__m128i) * 1]);
  __m128i m2 = loadu(&block[sizeof(__m128i) * 2]);
  __m128i m3 = loadu(&block[sizeof(__m128i) * 3]);

  __m128i t0, t1, t2, t3, tt;

  // Round 1. The first round permutes the message words from the original
  // input order, into the groups that get mixed in parallel.
  t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(2, 0, 2, 0)); //  6  4  2  0
  g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
  t1 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 3, 1)); //  7  5  3  1
  g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
  diagonalize(&rows[0], &rows[2], &rows[3]);
  t2 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(2, 0, 2, 0)); // 14 12 10  8
  t2 = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2, 1, 0, 3));   // 12 10  8 14
  g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
  t3 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 1, 3, 1)); // 15 13 11  9
  t3 = _mm_shuffle_epi32(t3, _MM_SHUFFLE(2, 1, 0, 3));   // 13 11  9 15
  g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
  undiagonalize(&rows[0], &rows[2], &rows[3]);
  m0 = t0;
  m1 = t1;
  m2 = t2;
  m3 = t3;

  // Round 2. This round and all following rounds apply a fixed permutation
  // to the message words from the round before.
  t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
  t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
  g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
  t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
  tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
  t1 = _mm_blend_epi16(tt, t1, 0xCC);
  g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
  diagonalize(&rows[0], &rows[2], &rows[3]);
  t2 = _mm_unpacklo_epi64(m3, m1);
  tt = _mm_blend_epi16(t2, m2, 0xC0);
  t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
  g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
  t3 = _mm_unpackhi_epi32(m1, m3);
  tt = _mm_unpacklo_epi32(m2, t3);
  t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
  g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
  undiagonalize(&rows[0], &rows[2], &rows[3]);
  m0 = t0;
  m1 = t1;
  m2 = t2;
  m3 = t3;

  // Round 3
  t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
  t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
  g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
  t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
  tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
  t1 = _mm_blend_epi16(tt, t1, 0xCC);
  g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
  diagonalize(&rows[0], &rows[2], &rows[3]);
  t2 = _mm_unpacklo_epi64(m3, m1);
  tt = _mm_blend_epi16(t2, m2, 0xC0);
  t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
  g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
  t3 = _mm_unpackhi_epi32(m1, m3);
  tt = _mm_unpacklo_epi32(m2, t3);
  t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
  g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
  undiagonalize(&rows[0], &rows[2], &rows[3]);
  m0 = t0;
  m1 = t1;
  m2 = t2;
  m3 = t3;

  // Round 4
  t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
  t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
  g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
  t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
  tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
  t1 = _mm_blend_epi16(tt, t1, 0xCC);
  g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
  diagonalize(&rows[0], &rows[2], &rows[3]);
  t2 = _mm_unpacklo_epi64(m3, m1);
  tt = _mm_blend_epi16(t2, m2, 0xC0);
  t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
  g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
  t3 = _mm_unpackhi_epi32(m1, m3);
  tt = _mm_unpacklo_epi32(m2, t3);
  t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
  g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
  undiagonalize(&rows[0], &rows[2], &rows[3]);
  m0 = t0;
  m1 = t1;
  m2 = t2;
  m3 = t3;

  // Round 5
  t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
  t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
  g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
  t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
  tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
  t1 = _mm_blend_epi16(tt, t1, 0xCC);
  g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
  diagonalize(&rows[0], &rows[2], &rows[3]);
  t2 = _mm_unpacklo_epi64(m3, m1);
  tt = _mm_blend_epi16(t2, m2, 0xC0);
  t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
  g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
  t3 = _mm_unpackhi_epi32(m1, m3);
  tt = _mm_unpacklo_epi32(m2, t3);
  t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
  g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
  undiagonalize(&rows[0], &rows[2], &rows[3]);
  m0 = t0;
  m1 = t1;
  m2 = t2;
  m3 = t3;

  // Round 6
  t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
  t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
  g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
  t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
  tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
  t1 = _mm_blend_epi16(tt, t1, 0xCC);
  g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
  diagonalize(&rows[0], &rows[2], &rows[3]);
  t2 = _mm_unpacklo_epi64(m3, m1);
  tt = _mm_blend_epi16(t2, m2, 0xC0);
  t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
  g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
  t3 = _mm_unpackhi_epi32(m1, m3);
  tt = _mm_unpacklo_epi32(m2, t3);
  t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
  g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
  undiagonalize(&rows[0], &rows[2], &rows[3]);
  m0 = t0;
  m1 = t1;
  m2 = t2;
  m3 = t3;

  // Round 7
  t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2));
  t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1));
  g1(&rows[0], &rows[1], &rows[2], &rows[3], t0);
  t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2));
  tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3));
  t1 = _mm_blend_epi16(tt, t1, 0xCC);
  g2(&rows[0], &rows[1], &rows[2], &rows[3], t1);
  diagonalize(&rows[0], &rows[2], &rows[3]);
  t2 = _mm_unpacklo_epi64(m3, m1);
  tt = _mm_blend_epi16(t2, m2, 0xC0);
  t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0));
  g1(&rows[0], &rows[1], &rows[2], &rows[3], t2);
  t3 = _mm_unpackhi_epi32(m1, m3);
  tt = _mm_unpacklo_epi32(m2, t3);
  t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2));
  g2(&rows[0], &rows[1], &rows[2], &rows[3], t3);
  undiagonalize(&rows[0], &rows[2], &rows[3]);
}

void blake3_compress_in_place_sse41(uint32_t cv[8],
                                    const uint8_t block[BLAKE3_BLOCK_LEN],
                                    uint8_t block_len, uint64_t counter,
                                    uint8_t flags) {
  __m128i rows[4];
  compress_pre(rows, cv, block, block_len, counter, flags);
  storeu(xorv(rows[0], rows[2]), (uint8_t *)&cv[0]);
  storeu(xorv(rows[1], rows[3]), (uint8_t *)&cv[4]);
}

void blake3_compress_xof_sse41(const uint32_t cv[8],
                               const uint8_t block[BLAKE3_BLOCK_LEN],
                               uint8_t block_len, uint64_t counter,
                               uint8_t flags, uint8_t out[64]) {
  __m128i rows[4];
  compress_pre(rows, cv, block, block_len, counter, flags);
  storeu(xorv(rows[0], rows[2]), &out[0]);
  storeu(xorv(rows[1], rows[3]), &out[16]);
  storeu(xorv(rows[2], loadu((uint8_t *)&cv[0])), &out[32]);
  storeu(xorv(rows[3], loadu((uint8_t *)&cv[4])), &out[48]);
}

INLINE void round_fn(__m128i v[16], __m128i m[16], size_t r) {
  v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][0]]);
  v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][2]]);
  v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][4]]);
  v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][6]]);
  v[0] = addv(v[0], v[4]);
  v[1] = addv(v[1], v[5]);
  v[2] = addv(v[2], v[6]);
  v[3] = addv(v[3], v[7]);
  v[12] = xorv(v[12], v[0]);
  v[13] = xorv(v[13], v[1]);
  v[14] = xorv(v[14], v[2]);
  v[15] = xorv(v[15], v[3]);
  v[12] = rot16(v[12]);
  v[13] = rot16(v[13]);
  v[14] = rot16(v[14]);
  v[15] = rot16(v[15]);
  v[8] = addv(v[8], v[12]);
  v[9] = addv(v[9], v[13]);
  v[10] = addv(v[10], v[14]);
  v[11] = addv(v[11], v[15]);
  v[4] = xorv(v[4], v[8]);
  v[5] = xorv(v[5], v[9]);
  v[6] = xorv(v[6], v[10]);
  v[7] = xorv(v[7], v[11]);
  v[4] = rot12(v[4]);
  v[5] = rot12(v[5]);
  v[6] = rot12(v[6]);
  v[7] = rot12(v[7]);
  v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][1]]);
  v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][3]]);
  v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][5]]);
  v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][7]]);
  v[0] = addv(v[0], v[4]);
  v[1] = addv(v[1], v[5]);
  v[2] = addv(v[2], v[6]);
  v[3] = addv(v[3], v[7]);
  v[12] = xorv(v[12], v[0]);
  v[13] = xorv(v[13], v[1]);
  v[14] = xorv(v[14], v[2]);
  v[15] = xorv(v[15], v[3]);
  v[12] = rot8(v[12]);
  v[13] = rot8(v[13]);
  v[14] = rot8(v[14]);
  v[15] = rot8(v[15]);
  v[8] = addv(v[8], v[12]);
  v[9] = addv(v[9], v[13]);
  v[10] = addv(v[10], v[14]);
  v[11] = addv(v[11], v[15]);
  v[4] = xorv(v[4], v[8]);
  v[5] = xorv(v[5], v[9]);
  v[6] = xorv(v[6], v[10]);
  v[7] = xorv(v[7], v[11]);
  v[4] = rot7(v[4]);
  v[5] = rot7(v[5]);
  v[6] = rot7(v[6]);
  v[7] = rot7(v[7]);

  v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][8]]);
  v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][10]]);
  v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][12]]);
  v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][14]]);
  v[0] = addv(v[0], v[5]);
  v[1] = addv(v[1], v[6]);
  v[2] = addv(v[2], v[7]);
  v[3] = addv(v[3], v[4]);
  v[15] = xorv(v[15], v[0]);
  v[12] = xorv(v[12], v[1]);
  v[13] = xorv(v[13], v[2]);
  v[14] = xorv(v[14], v[3]);
  v[15] = rot16(v[15]);
  v[12] = rot16(v[12]);
  v[13] = rot16(v[13]);
  v[14] = rot16(v[14]);
  v[10] = addv(v[10], v[15]);
  v[11] = addv(v[11], v[12]);
  v[8] = addv(v[8], v[13]);
  v[9] = addv(v[9], v[14]);
  v[5] = xorv(v[5], v[10]);
  v[6] = xorv(v[6], v[11]);
  v[7] = xorv(v[7], v[8]);
  v[4] = xorv(v[4], v[9]);
  v[5] = rot12(v[5]);
  v[6] = rot12(v[6]);
  v[7] = rot12(v[7]);
  v[4] = rot12(v[4]);
  v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][9]]);
  v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][11]]);
  v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][13]]);
  v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][15]]);
  v[0] = addv(v[0], v[5]);
  v[1] = addv(v[1], v[6]);
  v[2] = addv(v[2], v[7]);
  v[3] = addv(v[3], v[4]);
  v[15] = xorv(v[15], v[0]);
  v[12] = xorv(v[12], v[1]);
  v[13] = xorv(v[13], v[2]);
  v[14] = xorv(v[14], v[3]);
  v[15] = rot8(v[15]);
  v[12] = rot8(v[12]);
  v[13] = rot8(v[13]);
  v[14] = rot8(v[14]);
  v[10] = addv(v[10], v[15]);
  v[11] = addv(v[11], v[12]);
  v[8] = addv(v[8], v[13]);
  v[9] = addv(v[9], v[14]);
  v[5] = xorv(v[5], v[10]);
  v[6] = xorv(v[6], v[11]);
  v[7] = xorv(v[7], v[8]);
  v[4] = xorv(v[4], v[9]);
  v[5] = rot7(v[5]);
  v[6] = rot7(v[6]);
  v[7] = rot7(v[7]);
  v[4] = rot7(v[4]);
}

INLINE void transpose_vecs(__m128i vecs[DEGREE]) {
  // Interleave 32-bit lates. The low unpack is lanes 00/11 and the high is
  // 22/33. Note that this doesn't split the vector into two lanes, as the
  // AVX2 counterparts do.
  __m128i ab_01 = _mm_unpacklo_epi32(vecs[0], vecs[1]);
  __m128i ab_23 = _mm_unpackhi_epi32(vecs[0], vecs[1]);
  __m128i cd_01 = _mm_unpacklo_epi32(vecs[2], vecs[3]);
  __m128i cd_23 = _mm_unpackhi_epi32(vecs[2], vecs[3]);

  // Interleave 64-bit lanes.
  __m128i abcd_0 = _mm_unpacklo_epi64(ab_01, cd_01);
  __m128i abcd_1 = _mm_unpackhi_epi64(ab_01, cd_01);
  __m128i abcd_2 = _mm_unpacklo_epi64(ab_23, cd_23);
  __m128i abcd_3 = _mm_unpackhi_epi64(ab_23, cd_23);

  vecs[0] = abcd_0;
  vecs[1] = abcd_1;
  vecs[2] = abcd_2;
  vecs[3] = abcd_3;
}

INLINE void transpose_msg_vecs(const uint8_t *const *inputs,
                               size_t block_offset, __m128i out[16]) {
  out[0] = loadu(&inputs[0][block_offset + 0 * sizeof(__m128i)]);
  out[1] = loadu(&inputs[1][block_offset + 0 * sizeof(__m128i)]);
  out[2] = loadu(&inputs[2][block_offset + 0 * sizeof(__m128i)]);
  out[3] = loadu(&inputs[3][block_offset + 0 * sizeof(__m128i)]);
  out[4] = loadu(&inputs[0][block_offset + 1 * sizeof(__m128i)]);
  out[5] = loadu(&inputs[1][block_offset + 1 * sizeof(__m128i)]);
  out[6] = loadu(&inputs[2][block_offset + 1 * sizeof(__m128i)]);
  out[7] = loadu(&inputs[3][block_offset + 1 * sizeof(__m128i)]);
  out[8] = loadu(&inputs[0][block_offset + 2 * sizeof(__m128i)]);
  out[9] = loadu(&inputs[1][block_offset + 2 * sizeof(__m128i)]);
  out[10] = loadu(&inputs[2][block_offset + 2 * sizeof(__m128i)]);
  out[11] = loadu(&inputs[3][block_offset + 2 * sizeof(__m128i)]);
  out[12] = loadu(&inputs[0][block_offset + 3 * sizeof(__m128i)]);
  out[13] = loadu(&inputs[1][block_offset + 3 * sizeof(__m128i)]);
  out[14] = loadu(&inputs[2][block_offset + 3 * sizeof(__m128i)]);
  out[15] = loadu(&inputs[3][block_offset + 3 * sizeof(__m128i)]);
  for (size_t i = 0; i < 4; ++i) {
    _mm_prefetch((const void *)&inputs[i][block_offset + 256], _MM_HINT_T0);
  }
  transpose_vecs(&out[0]);
  transpose_vecs(&out[4]);
  transpose_vecs(&out[8]);
  transpose_vecs(&out[12]);
}

INLINE void load_counters(uint64_t counter, bool increment_counter,
                          __m128i *out_lo, __m128i *out_hi) {
  const __m128i mask = _mm_set1_epi32(-(int32_t)increment_counter);
  const __m128i add0 = _mm_set_epi32(3, 2, 1, 0);
  const __m128i add1 = _mm_and_si128(mask, add0);
  __m128i l = _mm_add_epi32(_mm_set1_epi32((int32_t)counter), add1);
  __m128i carry = _mm_cmpgt_epi32(_mm_xor_si128(add1, _mm_set1_epi32(0x80000000)), 
                                  _mm_xor_si128(   l, _mm_set1_epi32(0x80000000)));
  __m128i h = _mm_sub_epi32(_mm_set1_epi32((int32_t)(counter >> 32)), carry);
  *out_lo = l;
  *out_hi = h;
}

static
void blake3_hash4_sse41(const uint8_t *const *inputs, size_t blocks,
                        const uint32_t key[8], uint64_t counter,
                        bool increment_counter, uint8_t flags,
                        uint8_t flags_start, uint8_t flags_end, uint8_t *out) {
  __m128i h_vecs[8] = {
      set1(key[0]), set1(key[1]), set1(key[2]), set1(key[3]),
      set1(key[4]), set1(key[5]), set1(key[6]), set1(key[7]),
  };
  __m128i counter_low_vec, counter_high_vec;
  load_counters(counter, increment_counter, &counter_low_vec,
                &counter_high_vec);
  uint8_t block_flags = flags | flags_start;

  for (size_t block = 0; block < blocks; block++) {
    if (block + 1 == blocks) {
      block_flags |= flags_end;
    }
    __m128i block_len_vec = set1(BLAKE3_BLOCK_LEN);
    __m128i block_flags_vec = set1(block_flags);
    __m128i msg_vecs[16];
    transpose_msg_vecs(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs);

    __m128i v[16] = {
        h_vecs[0],       h_vecs[1],        h_vecs[2],     h_vecs[3],
        h_vecs[4],       h_vecs[5],        h_vecs[6],     h_vecs[7],
        set1(IV[0]),     set1(IV[1]),      set1(IV[2]),   set1(IV[3]),
        counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec,
    };
    round_fn(v, msg_vecs, 0);
    round_fn(v, msg_vecs, 1);
    round_fn(v, msg_vecs, 2);
    round_fn(v, msg_vecs, 3);
    round_fn(v, msg_vecs, 4);
    round_fn(v, msg_vecs, 5);
    round_fn(v, msg_vecs, 6);
    h_vecs[0] = xorv(v[0], v[8]);
    h_vecs[1] = xorv(v[1], v[9]);
    h_vecs[2] = xorv(v[2], v[10]);
    h_vecs[3] = xorv(v[3], v[11]);
    h_vecs[4] = xorv(v[4], v[12]);
    h_vecs[5] = xorv(v[5], v[13]);
    h_vecs[6] = xorv(v[6], v[14]);
    h_vecs[7] = xorv(v[7], v[15]);

    block_flags = flags;
  }

  transpose_vecs(&h_vecs[0]);
  transpose_vecs(&h_vecs[4]);
  // The first four vecs now contain the first half of each output, and the
  // second four vecs contain the second half of each output.
  storeu(h_vecs[0], &out[0 * sizeof(__m128i)]);
  storeu(h_vecs[4], &out[1 * sizeof(__m128i)]);
  storeu(h_vecs[1], &out[2 * sizeof(__m128i)]);
  storeu(h_vecs[5], &out[3 * sizeof(__m128i)]);
  storeu(h_vecs[2], &out[4 * sizeof(__m128i)]);
  storeu(h_vecs[6], &out[5 * sizeof(__m128i)]);
  storeu(h_vecs[3], &out[6 * sizeof(__m128i)]);
  storeu(h_vecs[7], &out[7 * sizeof(__m128i)]);
}

INLINE void hash_one_sse41(const uint8_t *input, size_t blocks,
                           const uint32_t key[8], uint64_t counter,
                           uint8_t flags, uint8_t flags_start,
                           uint8_t flags_end, uint8_t out[BLAKE3_OUT_LEN]) {
  uint32_t cv[8];
  memcpy(cv, key, BLAKE3_KEY_LEN);
  uint8_t block_flags = flags | flags_start;
  while (blocks > 0) {
    if (blocks == 1) {
      block_flags |= flags_end;
    }
    blake3_compress_in_place_sse41(cv, input, BLAKE3_BLOCK_LEN, counter,
                                   block_flags);
    input = &input[BLAKE3_BLOCK_LEN];
    blocks -= 1;
    block_flags = flags;
  }
  memcpy(out, cv, BLAKE3_OUT_LEN);
}

void blake3_hash_many_sse41(const uint8_t *const *inputs, size_t num_inputs,
                            size_t blocks, const uint32_t key[8],
                            uint64_t counter, bool increment_counter,
                            uint8_t flags, uint8_t flags_start,
                            uint8_t flags_end, uint8_t *out) {
  while (num_inputs >= DEGREE) {
    blake3_hash4_sse41(inputs, blocks, key, counter, increment_counter, flags,
                       flags_start, flags_end, out);
    if (increment_counter) {
      counter += DEGREE;
    }
    inputs += DEGREE;
    num_inputs -= DEGREE;
    out = &out[DEGREE * BLAKE3_OUT_LEN];
  }
  while (num_inputs > 0) {
    hash_one_sse41(inputs[0], blocks, key, counter, flags, flags_start,
                   flags_end, out);
    if (increment_counter) {
      counter += 1;
    }
    inputs += 1;
    num_inputs -= 1;
    out = &out[BLAKE3_OUT_LEN];
  }
}