Code » test-hashes » commit e2ba0d7
Add blake3-off-intr variant
author | Olivier Brunel
<jjk@jjacky.com> 2023-01-26 08:52:43 UTC |
committer | Olivier Brunel
<jjk@jjacky.com> 2023-01-26 08:53:27 UTC |
parent | 9153fa72d1655cc1d13d1804ac867eb8dbe97f3f |
meta/AUTHORS | +1 | -1 |
meta/bins/test-blake3-off-intr | +10 | -0 |
project.mk | +6 | -1 |
src/blake3-off-avx2.c | +326 | -0 |
src/blake3-off-avx512.c | +1220 | -0 |
src/blake3-off-sse2.c | +566 | -0 |
src/blake3-off-sse41.c | +560 | -0 |
diff --git a/meta/AUTHORS b/meta/AUTHORS index c9acca6..cf1b7da 100644 --- a/meta/AUTHORS +++ b/meta/AUTHORS @@ -5,4 +5,4 @@ Contributors: * Markku-Juhani O. Saarinen [tiny-sha3] * Niels Möller [sha3-nettle-impl] * David Leon Gil, TOR devs [sha3-unrolled] -* Samuel Neves and Jack O'Connor [blake3-off, blake3-off-noopt] +* Samuel Neves and Jack O'Connor [blake3-off, blake3-off-noopt, blake3-off-intr] diff --git a/meta/bins/test-blake3-off-intr b/meta/bins/test-blake3-off-intr new file mode 100644 index 0000000..f69d63a --- /dev/null +++ b/meta/bins/test-blake3-off-intr @@ -0,0 +1,10 @@ +src/test.o +skalibs +src/blake3-off-impl.o +src/blake3-off-impl-portable.o +src/blake3-off-impl-dispatch.o +src/blake3-off-sse2.o +src/blake3-off-sse41.o +src/blake3-off-avx2.o +src/blake3-off-avx512.o +src/blake3-off.o diff --git a/project.mk b/project.mk index a9b2bba..565f27e 100644 --- a/project.mk +++ b/project.mk @@ -4,10 +4,15 @@ BINS = test-sha1-skalibs test-sha256-skalibs test-blake2s-skalibs \ test-sha3-tiny \ test-sha3-unrolled \ test-sha3-nettle \ - test-blake3-off test-blake3-off-noopt + test-blake3-off test-blake3-off-noopt test-blake3-off-intr NOOPT_FLAGS = -DBLAKE3_NO_SSE2 -DBLAKE3_NO_SSE41 -DBLAKE3_NO_AVX2 -DBLAKE3_NO_AVX512 +CFLAGS_blake3-off-sse2 = -msse2 +CFLAGS_blake3-off-sse41 = -msse4.1 +CFLAGS_blake3-off-avx2 = -mavx2 +CFLAGS_blake3-off-avx512 = -mavx512f -mavx512vl -mavx512bw + CLEAN += src/blake3-off-noopt*.o src/blake3-off-noopt*.d src/blake3-off-noopt.o: src/blake3-off.o diff --git a/src/blake3-off-avx2.c b/src/blake3-off-avx2.c new file mode 100644 index 0000000..a9d586e --- /dev/null +++ b/src/blake3-off-avx2.c @@ -0,0 +1,326 @@ +#include "blake3-off-impl.h" + +#include <immintrin.h> + +#define DEGREE 8 + +INLINE __m256i loadu(const uint8_t src[32]) { + return _mm256_loadu_si256((const __m256i *)src); +} + +INLINE void storeu(__m256i src, uint8_t dest[16]) { + _mm256_storeu_si256((__m256i *)dest, src); +} + +INLINE __m256i addv(__m256i a, __m256i b) { return _mm256_add_epi32(a, b); } + +// Note that clang-format doesn't like the name "xor" for some reason. +INLINE __m256i xorv(__m256i a, __m256i b) { return _mm256_xor_si256(a, b); } + +INLINE __m256i set1(uint32_t x) { return _mm256_set1_epi32((int32_t)x); } + +INLINE __m256i rot16(__m256i x) { + return _mm256_shuffle_epi8( + x, _mm256_set_epi8(13, 12, 15, 14, 9, 8, 11, 10, 5, 4, 7, 6, 1, 0, 3, 2, + 13, 12, 15, 14, 9, 8, 11, 10, 5, 4, 7, 6, 1, 0, 3, 2)); +} + +INLINE __m256i rot12(__m256i x) { + return _mm256_or_si256(_mm256_srli_epi32(x, 12), _mm256_slli_epi32(x, 32 - 12)); +} + +INLINE __m256i rot8(__m256i x) { + return _mm256_shuffle_epi8( + x, _mm256_set_epi8(12, 15, 14, 13, 8, 11, 10, 9, 4, 7, 6, 5, 0, 3, 2, 1, + 12, 15, 14, 13, 8, 11, 10, 9, 4, 7, 6, 5, 0, 3, 2, 1)); +} + +INLINE __m256i rot7(__m256i x) { + return _mm256_or_si256(_mm256_srli_epi32(x, 7), _mm256_slli_epi32(x, 32 - 7)); +} + +INLINE void round_fn(__m256i v[16], __m256i m[16], size_t r) { + v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][0]]); + v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][2]]); + v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][4]]); + v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][6]]); + v[0] = addv(v[0], v[4]); + v[1] = addv(v[1], v[5]); + v[2] = addv(v[2], v[6]); + v[3] = addv(v[3], v[7]); + v[12] = xorv(v[12], v[0]); + v[13] = xorv(v[13], v[1]); + v[14] = xorv(v[14], v[2]); + v[15] = xorv(v[15], v[3]); + v[12] = rot16(v[12]); + v[13] = rot16(v[13]); + v[14] = rot16(v[14]); + v[15] = rot16(v[15]); + v[8] = addv(v[8], v[12]); + v[9] = addv(v[9], v[13]); + v[10] = addv(v[10], v[14]); + v[11] = addv(v[11], v[15]); + v[4] = xorv(v[4], v[8]); + v[5] = xorv(v[5], v[9]); + v[6] = xorv(v[6], v[10]); + v[7] = xorv(v[7], v[11]); + v[4] = rot12(v[4]); + v[5] = rot12(v[5]); + v[6] = rot12(v[6]); + v[7] = rot12(v[7]); + v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][1]]); + v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][3]]); + v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][5]]); + v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][7]]); + v[0] = addv(v[0], v[4]); + v[1] = addv(v[1], v[5]); + v[2] = addv(v[2], v[6]); + v[3] = addv(v[3], v[7]); + v[12] = xorv(v[12], v[0]); + v[13] = xorv(v[13], v[1]); + v[14] = xorv(v[14], v[2]); + v[15] = xorv(v[15], v[3]); + v[12] = rot8(v[12]); + v[13] = rot8(v[13]); + v[14] = rot8(v[14]); + v[15] = rot8(v[15]); + v[8] = addv(v[8], v[12]); + v[9] = addv(v[9], v[13]); + v[10] = addv(v[10], v[14]); + v[11] = addv(v[11], v[15]); + v[4] = xorv(v[4], v[8]); + v[5] = xorv(v[5], v[9]); + v[6] = xorv(v[6], v[10]); + v[7] = xorv(v[7], v[11]); + v[4] = rot7(v[4]); + v[5] = rot7(v[5]); + v[6] = rot7(v[6]); + v[7] = rot7(v[7]); + + v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][8]]); + v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][10]]); + v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][12]]); + v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][14]]); + v[0] = addv(v[0], v[5]); + v[1] = addv(v[1], v[6]); + v[2] = addv(v[2], v[7]); + v[3] = addv(v[3], v[4]); + v[15] = xorv(v[15], v[0]); + v[12] = xorv(v[12], v[1]); + v[13] = xorv(v[13], v[2]); + v[14] = xorv(v[14], v[3]); + v[15] = rot16(v[15]); + v[12] = rot16(v[12]); + v[13] = rot16(v[13]); + v[14] = rot16(v[14]); + v[10] = addv(v[10], v[15]); + v[11] = addv(v[11], v[12]); + v[8] = addv(v[8], v[13]); + v[9] = addv(v[9], v[14]); + v[5] = xorv(v[5], v[10]); + v[6] = xorv(v[6], v[11]); + v[7] = xorv(v[7], v[8]); + v[4] = xorv(v[4], v[9]); + v[5] = rot12(v[5]); + v[6] = rot12(v[6]); + v[7] = rot12(v[7]); + v[4] = rot12(v[4]); + v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][9]]); + v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][11]]); + v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][13]]); + v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][15]]); + v[0] = addv(v[0], v[5]); + v[1] = addv(v[1], v[6]); + v[2] = addv(v[2], v[7]); + v[3] = addv(v[3], v[4]); + v[15] = xorv(v[15], v[0]); + v[12] = xorv(v[12], v[1]); + v[13] = xorv(v[13], v[2]); + v[14] = xorv(v[14], v[3]); + v[15] = rot8(v[15]); + v[12] = rot8(v[12]); + v[13] = rot8(v[13]); + v[14] = rot8(v[14]); + v[10] = addv(v[10], v[15]); + v[11] = addv(v[11], v[12]); + v[8] = addv(v[8], v[13]); + v[9] = addv(v[9], v[14]); + v[5] = xorv(v[5], v[10]); + v[6] = xorv(v[6], v[11]); + v[7] = xorv(v[7], v[8]); + v[4] = xorv(v[4], v[9]); + v[5] = rot7(v[5]); + v[6] = rot7(v[6]); + v[7] = rot7(v[7]); + v[4] = rot7(v[4]); +} + +INLINE void transpose_vecs(__m256i vecs[DEGREE]) { + // Interleave 32-bit lanes. The low unpack is lanes 00/11/44/55, and the high + // is 22/33/66/77. + __m256i ab_0145 = _mm256_unpacklo_epi32(vecs[0], vecs[1]); + __m256i ab_2367 = _mm256_unpackhi_epi32(vecs[0], vecs[1]); + __m256i cd_0145 = _mm256_unpacklo_epi32(vecs[2], vecs[3]); + __m256i cd_2367 = _mm256_unpackhi_epi32(vecs[2], vecs[3]); + __m256i ef_0145 = _mm256_unpacklo_epi32(vecs[4], vecs[5]); + __m256i ef_2367 = _mm256_unpackhi_epi32(vecs[4], vecs[5]); + __m256i gh_0145 = _mm256_unpacklo_epi32(vecs[6], vecs[7]); + __m256i gh_2367 = _mm256_unpackhi_epi32(vecs[6], vecs[7]); + + // Interleave 64-bit lates. The low unpack is lanes 00/22 and the high is + // 11/33. + __m256i abcd_04 = _mm256_unpacklo_epi64(ab_0145, cd_0145); + __m256i abcd_15 = _mm256_unpackhi_epi64(ab_0145, cd_0145); + __m256i abcd_26 = _mm256_unpacklo_epi64(ab_2367, cd_2367); + __m256i abcd_37 = _mm256_unpackhi_epi64(ab_2367, cd_2367); + __m256i efgh_04 = _mm256_unpacklo_epi64(ef_0145, gh_0145); + __m256i efgh_15 = _mm256_unpackhi_epi64(ef_0145, gh_0145); + __m256i efgh_26 = _mm256_unpacklo_epi64(ef_2367, gh_2367); + __m256i efgh_37 = _mm256_unpackhi_epi64(ef_2367, gh_2367); + + // Interleave 128-bit lanes. + vecs[0] = _mm256_permute2x128_si256(abcd_04, efgh_04, 0x20); + vecs[1] = _mm256_permute2x128_si256(abcd_15, efgh_15, 0x20); + vecs[2] = _mm256_permute2x128_si256(abcd_26, efgh_26, 0x20); + vecs[3] = _mm256_permute2x128_si256(abcd_37, efgh_37, 0x20); + vecs[4] = _mm256_permute2x128_si256(abcd_04, efgh_04, 0x31); + vecs[5] = _mm256_permute2x128_si256(abcd_15, efgh_15, 0x31); + vecs[6] = _mm256_permute2x128_si256(abcd_26, efgh_26, 0x31); + vecs[7] = _mm256_permute2x128_si256(abcd_37, efgh_37, 0x31); +} + +INLINE void transpose_msg_vecs(const uint8_t *const *inputs, + size_t block_offset, __m256i out[16]) { + out[0] = loadu(&inputs[0][block_offset + 0 * sizeof(__m256i)]); + out[1] = loadu(&inputs[1][block_offset + 0 * sizeof(__m256i)]); + out[2] = loadu(&inputs[2][block_offset + 0 * sizeof(__m256i)]); + out[3] = loadu(&inputs[3][block_offset + 0 * sizeof(__m256i)]); + out[4] = loadu(&inputs[4][block_offset + 0 * sizeof(__m256i)]); + out[5] = loadu(&inputs[5][block_offset + 0 * sizeof(__m256i)]); + out[6] = loadu(&inputs[6][block_offset + 0 * sizeof(__m256i)]); + out[7] = loadu(&inputs[7][block_offset + 0 * sizeof(__m256i)]); + out[8] = loadu(&inputs[0][block_offset + 1 * sizeof(__m256i)]); + out[9] = loadu(&inputs[1][block_offset + 1 * sizeof(__m256i)]); + out[10] = loadu(&inputs[2][block_offset + 1 * sizeof(__m256i)]); + out[11] = loadu(&inputs[3][block_offset + 1 * sizeof(__m256i)]); + out[12] = loadu(&inputs[4][block_offset + 1 * sizeof(__m256i)]); + out[13] = loadu(&inputs[5][block_offset + 1 * sizeof(__m256i)]); + out[14] = loadu(&inputs[6][block_offset + 1 * sizeof(__m256i)]); + out[15] = loadu(&inputs[7][block_offset + 1 * sizeof(__m256i)]); + for (size_t i = 0; i < 8; ++i) { + _mm_prefetch((const void *)&inputs[i][block_offset + 256], _MM_HINT_T0); + } + transpose_vecs(&out[0]); + transpose_vecs(&out[8]); +} + +INLINE void load_counters(uint64_t counter, bool increment_counter, + __m256i *out_lo, __m256i *out_hi) { + const __m256i mask = _mm256_set1_epi32(-(int32_t)increment_counter); + const __m256i add0 = _mm256_set_epi32(7, 6, 5, 4, 3, 2, 1, 0); + const __m256i add1 = _mm256_and_si256(mask, add0); + __m256i l = _mm256_add_epi32(_mm256_set1_epi32((int32_t)counter), add1); + __m256i carry = _mm256_cmpgt_epi32(_mm256_xor_si256(add1, _mm256_set1_epi32(0x80000000)), + _mm256_xor_si256( l, _mm256_set1_epi32(0x80000000))); + __m256i h = _mm256_sub_epi32(_mm256_set1_epi32((int32_t)(counter >> 32)), carry); + *out_lo = l; + *out_hi = h; +} + +static +void blake3_hash8_avx2(const uint8_t *const *inputs, size_t blocks, + const uint32_t key[8], uint64_t counter, + bool increment_counter, uint8_t flags, + uint8_t flags_start, uint8_t flags_end, uint8_t *out) { + __m256i h_vecs[8] = { + set1(key[0]), set1(key[1]), set1(key[2]), set1(key[3]), + set1(key[4]), set1(key[5]), set1(key[6]), set1(key[7]), + }; + __m256i counter_low_vec, counter_high_vec; + load_counters(counter, increment_counter, &counter_low_vec, + &counter_high_vec); + uint8_t block_flags = flags | flags_start; + + for (size_t block = 0; block < blocks; block++) { + if (block + 1 == blocks) { + block_flags |= flags_end; + } + __m256i block_len_vec = set1(BLAKE3_BLOCK_LEN); + __m256i block_flags_vec = set1(block_flags); + __m256i msg_vecs[16]; + transpose_msg_vecs(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs); + + __m256i v[16] = { + h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3], + h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7], + set1(IV[0]), set1(IV[1]), set1(IV[2]), set1(IV[3]), + counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec, + }; + round_fn(v, msg_vecs, 0); + round_fn(v, msg_vecs, 1); + round_fn(v, msg_vecs, 2); + round_fn(v, msg_vecs, 3); + round_fn(v, msg_vecs, 4); + round_fn(v, msg_vecs, 5); + round_fn(v, msg_vecs, 6); + h_vecs[0] = xorv(v[0], v[8]); + h_vecs[1] = xorv(v[1], v[9]); + h_vecs[2] = xorv(v[2], v[10]); + h_vecs[3] = xorv(v[3], v[11]); + h_vecs[4] = xorv(v[4], v[12]); + h_vecs[5] = xorv(v[5], v[13]); + h_vecs[6] = xorv(v[6], v[14]); + h_vecs[7] = xorv(v[7], v[15]); + + block_flags = flags; + } + + transpose_vecs(h_vecs); + storeu(h_vecs[0], &out[0 * sizeof(__m256i)]); + storeu(h_vecs[1], &out[1 * sizeof(__m256i)]); + storeu(h_vecs[2], &out[2 * sizeof(__m256i)]); + storeu(h_vecs[3], &out[3 * sizeof(__m256i)]); + storeu(h_vecs[4], &out[4 * sizeof(__m256i)]); + storeu(h_vecs[5], &out[5 * sizeof(__m256i)]); + storeu(h_vecs[6], &out[6 * sizeof(__m256i)]); + storeu(h_vecs[7], &out[7 * sizeof(__m256i)]); +} + +#if !defined(BLAKE3_NO_SSE41) +void blake3_hash_many_sse41(const uint8_t *const *inputs, size_t num_inputs, + size_t blocks, const uint32_t key[8], + uint64_t counter, bool increment_counter, + uint8_t flags, uint8_t flags_start, + uint8_t flags_end, uint8_t *out); +#else +void blake3_hash_many_portable(const uint8_t *const *inputs, size_t num_inputs, + size_t blocks, const uint32_t key[8], + uint64_t counter, bool increment_counter, + uint8_t flags, uint8_t flags_start, + uint8_t flags_end, uint8_t *out); +#endif + +void blake3_hash_many_avx2(const uint8_t *const *inputs, size_t num_inputs, + size_t blocks, const uint32_t key[8], + uint64_t counter, bool increment_counter, + uint8_t flags, uint8_t flags_start, + uint8_t flags_end, uint8_t *out) { + while (num_inputs >= DEGREE) { + blake3_hash8_avx2(inputs, blocks, key, counter, increment_counter, flags, + flags_start, flags_end, out); + if (increment_counter) { + counter += DEGREE; + } + inputs += DEGREE; + num_inputs -= DEGREE; + out = &out[DEGREE * BLAKE3_OUT_LEN]; + } +#if !defined(BLAKE3_NO_SSE41) + blake3_hash_many_sse41(inputs, num_inputs, blocks, key, counter, + increment_counter, flags, flags_start, flags_end, out); +#else + blake3_hash_many_portable(inputs, num_inputs, blocks, key, counter, + increment_counter, flags, flags_start, flags_end, + out); +#endif +} diff --git a/src/blake3-off-avx512.c b/src/blake3-off-avx512.c new file mode 100644 index 0000000..20e57df --- /dev/null +++ b/src/blake3-off-avx512.c @@ -0,0 +1,1220 @@ +#include "blake3-off-impl.h" + +#include <immintrin.h> + +#define _mm_shuffle_ps2(a, b, c) \ + (_mm_castps_si128( \ + _mm_shuffle_ps(_mm_castsi128_ps(a), _mm_castsi128_ps(b), (c)))) + +INLINE __m128i loadu_128(const uint8_t src[16]) { + return _mm_loadu_si128((const __m128i *)src); +} + +INLINE __m256i loadu_256(const uint8_t src[32]) { + return _mm256_loadu_si256((const __m256i *)src); +} + +INLINE __m512i loadu_512(const uint8_t src[64]) { + return _mm512_loadu_si512((const __m512i *)src); +} + +INLINE void storeu_128(__m128i src, uint8_t dest[16]) { + _mm_storeu_si128((__m128i *)dest, src); +} + +INLINE void storeu_256(__m256i src, uint8_t dest[16]) { + _mm256_storeu_si256((__m256i *)dest, src); +} + +INLINE __m128i add_128(__m128i a, __m128i b) { return _mm_add_epi32(a, b); } + +INLINE __m256i add_256(__m256i a, __m256i b) { return _mm256_add_epi32(a, b); } + +INLINE __m512i add_512(__m512i a, __m512i b) { return _mm512_add_epi32(a, b); } + +INLINE __m128i xor_128(__m128i a, __m128i b) { return _mm_xor_si128(a, b); } + +INLINE __m256i xor_256(__m256i a, __m256i b) { return _mm256_xor_si256(a, b); } + +INLINE __m512i xor_512(__m512i a, __m512i b) { return _mm512_xor_si512(a, b); } + +INLINE __m128i set1_128(uint32_t x) { return _mm_set1_epi32((int32_t)x); } + +INLINE __m256i set1_256(uint32_t x) { return _mm256_set1_epi32((int32_t)x); } + +INLINE __m512i set1_512(uint32_t x) { return _mm512_set1_epi32((int32_t)x); } + +INLINE __m128i set4(uint32_t a, uint32_t b, uint32_t c, uint32_t d) { + return _mm_setr_epi32((int32_t)a, (int32_t)b, (int32_t)c, (int32_t)d); +} + +INLINE __m128i rot16_128(__m128i x) { return _mm_ror_epi32(x, 16); } + +INLINE __m256i rot16_256(__m256i x) { return _mm256_ror_epi32(x, 16); } + +INLINE __m512i rot16_512(__m512i x) { return _mm512_ror_epi32(x, 16); } + +INLINE __m128i rot12_128(__m128i x) { return _mm_ror_epi32(x, 12); } + +INLINE __m256i rot12_256(__m256i x) { return _mm256_ror_epi32(x, 12); } + +INLINE __m512i rot12_512(__m512i x) { return _mm512_ror_epi32(x, 12); } + +INLINE __m128i rot8_128(__m128i x) { return _mm_ror_epi32(x, 8); } + +INLINE __m256i rot8_256(__m256i x) { return _mm256_ror_epi32(x, 8); } + +INLINE __m512i rot8_512(__m512i x) { return _mm512_ror_epi32(x, 8); } + +INLINE __m128i rot7_128(__m128i x) { return _mm_ror_epi32(x, 7); } + +INLINE __m256i rot7_256(__m256i x) { return _mm256_ror_epi32(x, 7); } + +INLINE __m512i rot7_512(__m512i x) { return _mm512_ror_epi32(x, 7); } + +/* + * ---------------------------------------------------------------------------- + * compress_avx512 + * ---------------------------------------------------------------------------- + */ + +INLINE void g1(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3, + __m128i m) { + *row0 = add_128(add_128(*row0, m), *row1); + *row3 = xor_128(*row3, *row0); + *row3 = rot16_128(*row3); + *row2 = add_128(*row2, *row3); + *row1 = xor_128(*row1, *row2); + *row1 = rot12_128(*row1); +} + +INLINE void g2(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3, + __m128i m) { + *row0 = add_128(add_128(*row0, m), *row1); + *row3 = xor_128(*row3, *row0); + *row3 = rot8_128(*row3); + *row2 = add_128(*row2, *row3); + *row1 = xor_128(*row1, *row2); + *row1 = rot7_128(*row1); +} + +// Note the optimization here of leaving row1 as the unrotated row, rather than +// row0. All the message loads below are adjusted to compensate for this. See +// discussion at https://github.com/sneves/blake2-avx2/pull/4 +INLINE void diagonalize(__m128i *row0, __m128i *row2, __m128i *row3) { + *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(2, 1, 0, 3)); + *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2)); + *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(0, 3, 2, 1)); +} + +INLINE void undiagonalize(__m128i *row0, __m128i *row2, __m128i *row3) { + *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(0, 3, 2, 1)); + *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2)); + *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(2, 1, 0, 3)); +} + +INLINE void compress_pre(__m128i rows[4], const uint32_t cv[8], + const uint8_t block[BLAKE3_BLOCK_LEN], + uint8_t block_len, uint64_t counter, uint8_t flags) { + rows[0] = loadu_128((uint8_t *)&cv[0]); + rows[1] = loadu_128((uint8_t *)&cv[4]); + rows[2] = set4(IV[0], IV[1], IV[2], IV[3]); + rows[3] = set4(counter_low(counter), counter_high(counter), + (uint32_t)block_len, (uint32_t)flags); + + __m128i m0 = loadu_128(&block[sizeof(__m128i) * 0]); + __m128i m1 = loadu_128(&block[sizeof(__m128i) * 1]); + __m128i m2 = loadu_128(&block[sizeof(__m128i) * 2]); + __m128i m3 = loadu_128(&block[sizeof(__m128i) * 3]); + + __m128i t0, t1, t2, t3, tt; + + // Round 1. The first round permutes the message words from the original + // input order, into the groups that get mixed in parallel. + t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(2, 0, 2, 0)); // 6 4 2 0 + g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); + t1 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 3, 1)); // 7 5 3 1 + g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); + diagonalize(&rows[0], &rows[2], &rows[3]); + t2 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(2, 0, 2, 0)); // 14 12 10 8 + t2 = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2, 1, 0, 3)); // 12 10 8 14 + g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); + t3 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 1, 3, 1)); // 15 13 11 9 + t3 = _mm_shuffle_epi32(t3, _MM_SHUFFLE(2, 1, 0, 3)); // 13 11 9 15 + g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); + undiagonalize(&rows[0], &rows[2], &rows[3]); + m0 = t0; + m1 = t1; + m2 = t2; + m3 = t3; + + // Round 2. This round and all following rounds apply a fixed permutation + // to the message words from the round before. + t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); + t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); + g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); + t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); + tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); + t1 = _mm_blend_epi16(tt, t1, 0xCC); + g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); + diagonalize(&rows[0], &rows[2], &rows[3]); + t2 = _mm_unpacklo_epi64(m3, m1); + tt = _mm_blend_epi16(t2, m2, 0xC0); + t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); + g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); + t3 = _mm_unpackhi_epi32(m1, m3); + tt = _mm_unpacklo_epi32(m2, t3); + t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); + g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); + undiagonalize(&rows[0], &rows[2], &rows[3]); + m0 = t0; + m1 = t1; + m2 = t2; + m3 = t3; + + // Round 3 + t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); + t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); + g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); + t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); + tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); + t1 = _mm_blend_epi16(tt, t1, 0xCC); + g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); + diagonalize(&rows[0], &rows[2], &rows[3]); + t2 = _mm_unpacklo_epi64(m3, m1); + tt = _mm_blend_epi16(t2, m2, 0xC0); + t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); + g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); + t3 = _mm_unpackhi_epi32(m1, m3); + tt = _mm_unpacklo_epi32(m2, t3); + t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); + g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); + undiagonalize(&rows[0], &rows[2], &rows[3]); + m0 = t0; + m1 = t1; + m2 = t2; + m3 = t3; + + // Round 4 + t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); + t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); + g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); + t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); + tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); + t1 = _mm_blend_epi16(tt, t1, 0xCC); + g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); + diagonalize(&rows[0], &rows[2], &rows[3]); + t2 = _mm_unpacklo_epi64(m3, m1); + tt = _mm_blend_epi16(t2, m2, 0xC0); + t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); + g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); + t3 = _mm_unpackhi_epi32(m1, m3); + tt = _mm_unpacklo_epi32(m2, t3); + t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); + g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); + undiagonalize(&rows[0], &rows[2], &rows[3]); + m0 = t0; + m1 = t1; + m2 = t2; + m3 = t3; + + // Round 5 + t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); + t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); + g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); + t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); + tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); + t1 = _mm_blend_epi16(tt, t1, 0xCC); + g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); + diagonalize(&rows[0], &rows[2], &rows[3]); + t2 = _mm_unpacklo_epi64(m3, m1); + tt = _mm_blend_epi16(t2, m2, 0xC0); + t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); + g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); + t3 = _mm_unpackhi_epi32(m1, m3); + tt = _mm_unpacklo_epi32(m2, t3); + t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); + g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); + undiagonalize(&rows[0], &rows[2], &rows[3]); + m0 = t0; + m1 = t1; + m2 = t2; + m3 = t3; + + // Round 6 + t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); + t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); + g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); + t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); + tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); + t1 = _mm_blend_epi16(tt, t1, 0xCC); + g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); + diagonalize(&rows[0], &rows[2], &rows[3]); + t2 = _mm_unpacklo_epi64(m3, m1); + tt = _mm_blend_epi16(t2, m2, 0xC0); + t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); + g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); + t3 = _mm_unpackhi_epi32(m1, m3); + tt = _mm_unpacklo_epi32(m2, t3); + t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); + g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); + undiagonalize(&rows[0], &rows[2], &rows[3]); + m0 = t0; + m1 = t1; + m2 = t2; + m3 = t3; + + // Round 7 + t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); + t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); + g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); + t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); + tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); + t1 = _mm_blend_epi16(tt, t1, 0xCC); + g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); + diagonalize(&rows[0], &rows[2], &rows[3]); + t2 = _mm_unpacklo_epi64(m3, m1); + tt = _mm_blend_epi16(t2, m2, 0xC0); + t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); + g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); + t3 = _mm_unpackhi_epi32(m1, m3); + tt = _mm_unpacklo_epi32(m2, t3); + t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); + g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); + undiagonalize(&rows[0], &rows[2], &rows[3]); +} + +void blake3_compress_xof_avx512(const uint32_t cv[8], + const uint8_t block[BLAKE3_BLOCK_LEN], + uint8_t block_len, uint64_t counter, + uint8_t flags, uint8_t out[64]) { + __m128i rows[4]; + compress_pre(rows, cv, block, block_len, counter, flags); + storeu_128(xor_128(rows[0], rows[2]), &out[0]); + storeu_128(xor_128(rows[1], rows[3]), &out[16]); + storeu_128(xor_128(rows[2], loadu_128((uint8_t *)&cv[0])), &out[32]); + storeu_128(xor_128(rows[3], loadu_128((uint8_t *)&cv[4])), &out[48]); +} + +void blake3_compress_in_place_avx512(uint32_t cv[8], + const uint8_t block[BLAKE3_BLOCK_LEN], + uint8_t block_len, uint64_t counter, + uint8_t flags) { + __m128i rows[4]; + compress_pre(rows, cv, block, block_len, counter, flags); + storeu_128(xor_128(rows[0], rows[2]), (uint8_t *)&cv[0]); + storeu_128(xor_128(rows[1], rows[3]), (uint8_t *)&cv[4]); +} + +/* + * ---------------------------------------------------------------------------- + * hash4_avx512 + * ---------------------------------------------------------------------------- + */ + +INLINE void round_fn4(__m128i v[16], __m128i m[16], size_t r) { + v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][0]]); + v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][2]]); + v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][4]]); + v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][6]]); + v[0] = add_128(v[0], v[4]); + v[1] = add_128(v[1], v[5]); + v[2] = add_128(v[2], v[6]); + v[3] = add_128(v[3], v[7]); + v[12] = xor_128(v[12], v[0]); + v[13] = xor_128(v[13], v[1]); + v[14] = xor_128(v[14], v[2]); + v[15] = xor_128(v[15], v[3]); + v[12] = rot16_128(v[12]); + v[13] = rot16_128(v[13]); + v[14] = rot16_128(v[14]); + v[15] = rot16_128(v[15]); + v[8] = add_128(v[8], v[12]); + v[9] = add_128(v[9], v[13]); + v[10] = add_128(v[10], v[14]); + v[11] = add_128(v[11], v[15]); + v[4] = xor_128(v[4], v[8]); + v[5] = xor_128(v[5], v[9]); + v[6] = xor_128(v[6], v[10]); + v[7] = xor_128(v[7], v[11]); + v[4] = rot12_128(v[4]); + v[5] = rot12_128(v[5]); + v[6] = rot12_128(v[6]); + v[7] = rot12_128(v[7]); + v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][1]]); + v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][3]]); + v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][5]]); + v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][7]]); + v[0] = add_128(v[0], v[4]); + v[1] = add_128(v[1], v[5]); + v[2] = add_128(v[2], v[6]); + v[3] = add_128(v[3], v[7]); + v[12] = xor_128(v[12], v[0]); + v[13] = xor_128(v[13], v[1]); + v[14] = xor_128(v[14], v[2]); + v[15] = xor_128(v[15], v[3]); + v[12] = rot8_128(v[12]); + v[13] = rot8_128(v[13]); + v[14] = rot8_128(v[14]); + v[15] = rot8_128(v[15]); + v[8] = add_128(v[8], v[12]); + v[9] = add_128(v[9], v[13]); + v[10] = add_128(v[10], v[14]); + v[11] = add_128(v[11], v[15]); + v[4] = xor_128(v[4], v[8]); + v[5] = xor_128(v[5], v[9]); + v[6] = xor_128(v[6], v[10]); + v[7] = xor_128(v[7], v[11]); + v[4] = rot7_128(v[4]); + v[5] = rot7_128(v[5]); + v[6] = rot7_128(v[6]); + v[7] = rot7_128(v[7]); + + v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][8]]); + v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][10]]); + v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][12]]); + v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][14]]); + v[0] = add_128(v[0], v[5]); + v[1] = add_128(v[1], v[6]); + v[2] = add_128(v[2], v[7]); + v[3] = add_128(v[3], v[4]); + v[15] = xor_128(v[15], v[0]); + v[12] = xor_128(v[12], v[1]); + v[13] = xor_128(v[13], v[2]); + v[14] = xor_128(v[14], v[3]); + v[15] = rot16_128(v[15]); + v[12] = rot16_128(v[12]); + v[13] = rot16_128(v[13]); + v[14] = rot16_128(v[14]); + v[10] = add_128(v[10], v[15]); + v[11] = add_128(v[11], v[12]); + v[8] = add_128(v[8], v[13]); + v[9] = add_128(v[9], v[14]); + v[5] = xor_128(v[5], v[10]); + v[6] = xor_128(v[6], v[11]); + v[7] = xor_128(v[7], v[8]); + v[4] = xor_128(v[4], v[9]); + v[5] = rot12_128(v[5]); + v[6] = rot12_128(v[6]); + v[7] = rot12_128(v[7]); + v[4] = rot12_128(v[4]); + v[0] = add_128(v[0], m[(size_t)MSG_SCHEDULE[r][9]]); + v[1] = add_128(v[1], m[(size_t)MSG_SCHEDULE[r][11]]); + v[2] = add_128(v[2], m[(size_t)MSG_SCHEDULE[r][13]]); + v[3] = add_128(v[3], m[(size_t)MSG_SCHEDULE[r][15]]); + v[0] = add_128(v[0], v[5]); + v[1] = add_128(v[1], v[6]); + v[2] = add_128(v[2], v[7]); + v[3] = add_128(v[3], v[4]); + v[15] = xor_128(v[15], v[0]); + v[12] = xor_128(v[12], v[1]); + v[13] = xor_128(v[13], v[2]); + v[14] = xor_128(v[14], v[3]); + v[15] = rot8_128(v[15]); + v[12] = rot8_128(v[12]); + v[13] = rot8_128(v[13]); + v[14] = rot8_128(v[14]); + v[10] = add_128(v[10], v[15]); + v[11] = add_128(v[11], v[12]); + v[8] = add_128(v[8], v[13]); + v[9] = add_128(v[9], v[14]); + v[5] = xor_128(v[5], v[10]); + v[6] = xor_128(v[6], v[11]); + v[7] = xor_128(v[7], v[8]); + v[4] = xor_128(v[4], v[9]); + v[5] = rot7_128(v[5]); + v[6] = rot7_128(v[6]); + v[7] = rot7_128(v[7]); + v[4] = rot7_128(v[4]); +} + +INLINE void transpose_vecs_128(__m128i vecs[4]) { + // Interleave 32-bit lates. The low unpack is lanes 00/11 and the high is + // 22/33. Note that this doesn't split the vector into two lanes, as the + // AVX2 counterparts do. + __m128i ab_01 = _mm_unpacklo_epi32(vecs[0], vecs[1]); + __m128i ab_23 = _mm_unpackhi_epi32(vecs[0], vecs[1]); + __m128i cd_01 = _mm_unpacklo_epi32(vecs[2], vecs[3]); + __m128i cd_23 = _mm_unpackhi_epi32(vecs[2], vecs[3]); + + // Interleave 64-bit lanes. + __m128i abcd_0 = _mm_unpacklo_epi64(ab_01, cd_01); + __m128i abcd_1 = _mm_unpackhi_epi64(ab_01, cd_01); + __m128i abcd_2 = _mm_unpacklo_epi64(ab_23, cd_23); + __m128i abcd_3 = _mm_unpackhi_epi64(ab_23, cd_23); + + vecs[0] = abcd_0; + vecs[1] = abcd_1; + vecs[2] = abcd_2; + vecs[3] = abcd_3; +} + +INLINE void transpose_msg_vecs4(const uint8_t *const *inputs, + size_t block_offset, __m128i out[16]) { + out[0] = loadu_128(&inputs[0][block_offset + 0 * sizeof(__m128i)]); + out[1] = loadu_128(&inputs[1][block_offset + 0 * sizeof(__m128i)]); + out[2] = loadu_128(&inputs[2][block_offset + 0 * sizeof(__m128i)]); + out[3] = loadu_128(&inputs[3][block_offset + 0 * sizeof(__m128i)]); + out[4] = loadu_128(&inputs[0][block_offset + 1 * sizeof(__m128i)]); + out[5] = loadu_128(&inputs[1][block_offset + 1 * sizeof(__m128i)]); + out[6] = loadu_128(&inputs[2][block_offset + 1 * sizeof(__m128i)]); + out[7] = loadu_128(&inputs[3][block_offset + 1 * sizeof(__m128i)]); + out[8] = loadu_128(&inputs[0][block_offset + 2 * sizeof(__m128i)]); + out[9] = loadu_128(&inputs[1][block_offset + 2 * sizeof(__m128i)]); + out[10] = loadu_128(&inputs[2][block_offset + 2 * sizeof(__m128i)]); + out[11] = loadu_128(&inputs[3][block_offset + 2 * sizeof(__m128i)]); + out[12] = loadu_128(&inputs[0][block_offset + 3 * sizeof(__m128i)]); + out[13] = loadu_128(&inputs[1][block_offset + 3 * sizeof(__m128i)]); + out[14] = loadu_128(&inputs[2][block_offset + 3 * sizeof(__m128i)]); + out[15] = loadu_128(&inputs[3][block_offset + 3 * sizeof(__m128i)]); + for (size_t i = 0; i < 4; ++i) { + _mm_prefetch((const void *)&inputs[i][block_offset + 256], _MM_HINT_T0); + } + transpose_vecs_128(&out[0]); + transpose_vecs_128(&out[4]); + transpose_vecs_128(&out[8]); + transpose_vecs_128(&out[12]); +} + +INLINE void load_counters4(uint64_t counter, bool increment_counter, + __m128i *out_lo, __m128i *out_hi) { + uint64_t mask = (increment_counter ? ~0 : 0); + __m256i mask_vec = _mm256_set1_epi64x(mask); + __m256i deltas = _mm256_setr_epi64x(0, 1, 2, 3); + deltas = _mm256_and_si256(mask_vec, deltas); + __m256i counters = + _mm256_add_epi64(_mm256_set1_epi64x((int64_t)counter), deltas); + *out_lo = _mm256_cvtepi64_epi32(counters); + *out_hi = _mm256_cvtepi64_epi32(_mm256_srli_epi64(counters, 32)); +} + +static +void blake3_hash4_avx512(const uint8_t *const *inputs, size_t blocks, + const uint32_t key[8], uint64_t counter, + bool increment_counter, uint8_t flags, + uint8_t flags_start, uint8_t flags_end, uint8_t *out) { + __m128i h_vecs[8] = { + set1_128(key[0]), set1_128(key[1]), set1_128(key[2]), set1_128(key[3]), + set1_128(key[4]), set1_128(key[5]), set1_128(key[6]), set1_128(key[7]), + }; + __m128i counter_low_vec, counter_high_vec; + load_counters4(counter, increment_counter, &counter_low_vec, + &counter_high_vec); + uint8_t block_flags = flags | flags_start; + + for (size_t block = 0; block < blocks; block++) { + if (block + 1 == blocks) { + block_flags |= flags_end; + } + __m128i block_len_vec = set1_128(BLAKE3_BLOCK_LEN); + __m128i block_flags_vec = set1_128(block_flags); + __m128i msg_vecs[16]; + transpose_msg_vecs4(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs); + + __m128i v[16] = { + h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3], + h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7], + set1_128(IV[0]), set1_128(IV[1]), set1_128(IV[2]), set1_128(IV[3]), + counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec, + }; + round_fn4(v, msg_vecs, 0); + round_fn4(v, msg_vecs, 1); + round_fn4(v, msg_vecs, 2); + round_fn4(v, msg_vecs, 3); + round_fn4(v, msg_vecs, 4); + round_fn4(v, msg_vecs, 5); + round_fn4(v, msg_vecs, 6); + h_vecs[0] = xor_128(v[0], v[8]); + h_vecs[1] = xor_128(v[1], v[9]); + h_vecs[2] = xor_128(v[2], v[10]); + h_vecs[3] = xor_128(v[3], v[11]); + h_vecs[4] = xor_128(v[4], v[12]); + h_vecs[5] = xor_128(v[5], v[13]); + h_vecs[6] = xor_128(v[6], v[14]); + h_vecs[7] = xor_128(v[7], v[15]); + + block_flags = flags; + } + + transpose_vecs_128(&h_vecs[0]); + transpose_vecs_128(&h_vecs[4]); + // The first four vecs now contain the first half of each output, and the + // second four vecs contain the second half of each output. + storeu_128(h_vecs[0], &out[0 * sizeof(__m128i)]); + storeu_128(h_vecs[4], &out[1 * sizeof(__m128i)]); + storeu_128(h_vecs[1], &out[2 * sizeof(__m128i)]); + storeu_128(h_vecs[5], &out[3 * sizeof(__m128i)]); + storeu_128(h_vecs[2], &out[4 * sizeof(__m128i)]); + storeu_128(h_vecs[6], &out[5 * sizeof(__m128i)]); + storeu_128(h_vecs[3], &out[6 * sizeof(__m128i)]); + storeu_128(h_vecs[7], &out[7 * sizeof(__m128i)]); +} + +/* + * ---------------------------------------------------------------------------- + * hash8_avx512 + * ---------------------------------------------------------------------------- + */ + +INLINE void round_fn8(__m256i v[16], __m256i m[16], size_t r) { + v[0] = add_256(v[0], m[(size_t)MSG_SCHEDULE[r][0]]); + v[1] = add_256(v[1], m[(size_t)MSG_SCHEDULE[r][2]]); + v[2] = add_256(v[2], m[(size_t)MSG_SCHEDULE[r][4]]); + v[3] = add_256(v[3], m[(size_t)MSG_SCHEDULE[r][6]]); + v[0] = add_256(v[0], v[4]); + v[1] = add_256(v[1], v[5]); + v[2] = add_256(v[2], v[6]); + v[3] = add_256(v[3], v[7]); + v[12] = xor_256(v[12], v[0]); + v[13] = xor_256(v[13], v[1]); + v[14] = xor_256(v[14], v[2]); + v[15] = xor_256(v[15], v[3]); + v[12] = rot16_256(v[12]); + v[13] = rot16_256(v[13]); + v[14] = rot16_256(v[14]); + v[15] = rot16_256(v[15]); + v[8] = add_256(v[8], v[12]); + v[9] = add_256(v[9], v[13]); + v[10] = add_256(v[10], v[14]); + v[11] = add_256(v[11], v[15]); + v[4] = xor_256(v[4], v[8]); + v[5] = xor_256(v[5], v[9]); + v[6] = xor_256(v[6], v[10]); + v[7] = xor_256(v[7], v[11]); + v[4] = rot12_256(v[4]); + v[5] = rot12_256(v[5]); + v[6] = rot12_256(v[6]); + v[7] = rot12_256(v[7]); + v[0] = add_256(v[0], m[(size_t)MSG_SCHEDULE[r][1]]); + v[1] = add_256(v[1], m[(size_t)MSG_SCHEDULE[r][3]]); + v[2] = add_256(v[2], m[(size_t)MSG_SCHEDULE[r][5]]); + v[3] = add_256(v[3], m[(size_t)MSG_SCHEDULE[r][7]]); + v[0] = add_256(v[0], v[4]); + v[1] = add_256(v[1], v[5]); + v[2] = add_256(v[2], v[6]); + v[3] = add_256(v[3], v[7]); + v[12] = xor_256(v[12], v[0]); + v[13] = xor_256(v[13], v[1]); + v[14] = xor_256(v[14], v[2]); + v[15] = xor_256(v[15], v[3]); + v[12] = rot8_256(v[12]); + v[13] = rot8_256(v[13]); + v[14] = rot8_256(v[14]); + v[15] = rot8_256(v[15]); + v[8] = add_256(v[8], v[12]); + v[9] = add_256(v[9], v[13]); + v[10] = add_256(v[10], v[14]); + v[11] = add_256(v[11], v[15]); + v[4] = xor_256(v[4], v[8]); + v[5] = xor_256(v[5], v[9]); + v[6] = xor_256(v[6], v[10]); + v[7] = xor_256(v[7], v[11]); + v[4] = rot7_256(v[4]); + v[5] = rot7_256(v[5]); + v[6] = rot7_256(v[6]); + v[7] = rot7_256(v[7]); + + v[0] = add_256(v[0], m[(size_t)MSG_SCHEDULE[r][8]]); + v[1] = add_256(v[1], m[(size_t)MSG_SCHEDULE[r][10]]); + v[2] = add_256(v[2], m[(size_t)MSG_SCHEDULE[r][12]]); + v[3] = add_256(v[3], m[(size_t)MSG_SCHEDULE[r][14]]); + v[0] = add_256(v[0], v[5]); + v[1] = add_256(v[1], v[6]); + v[2] = add_256(v[2], v[7]); + v[3] = add_256(v[3], v[4]); + v[15] = xor_256(v[15], v[0]); + v[12] = xor_256(v[12], v[1]); + v[13] = xor_256(v[13], v[2]); + v[14] = xor_256(v[14], v[3]); + v[15] = rot16_256(v[15]); + v[12] = rot16_256(v[12]); + v[13] = rot16_256(v[13]); + v[14] = rot16_256(v[14]); + v[10] = add_256(v[10], v[15]); + v[11] = add_256(v[11], v[12]); + v[8] = add_256(v[8], v[13]); + v[9] = add_256(v[9], v[14]); + v[5] = xor_256(v[5], v[10]); + v[6] = xor_256(v[6], v[11]); + v[7] = xor_256(v[7], v[8]); + v[4] = xor_256(v[4], v[9]); + v[5] = rot12_256(v[5]); + v[6] = rot12_256(v[6]); + v[7] = rot12_256(v[7]); + v[4] = rot12_256(v[4]); + v[0] = add_256(v[0], m[(size_t)MSG_SCHEDULE[r][9]]); + v[1] = add_256(v[1], m[(size_t)MSG_SCHEDULE[r][11]]); + v[2] = add_256(v[2], m[(size_t)MSG_SCHEDULE[r][13]]); + v[3] = add_256(v[3], m[(size_t)MSG_SCHEDULE[r][15]]); + v[0] = add_256(v[0], v[5]); + v[1] = add_256(v[1], v[6]); + v[2] = add_256(v[2], v[7]); + v[3] = add_256(v[3], v[4]); + v[15] = xor_256(v[15], v[0]); + v[12] = xor_256(v[12], v[1]); + v[13] = xor_256(v[13], v[2]); + v[14] = xor_256(v[14], v[3]); + v[15] = rot8_256(v[15]); + v[12] = rot8_256(v[12]); + v[13] = rot8_256(v[13]); + v[14] = rot8_256(v[14]); + v[10] = add_256(v[10], v[15]); + v[11] = add_256(v[11], v[12]); + v[8] = add_256(v[8], v[13]); + v[9] = add_256(v[9], v[14]); + v[5] = xor_256(v[5], v[10]); + v[6] = xor_256(v[6], v[11]); + v[7] = xor_256(v[7], v[8]); + v[4] = xor_256(v[4], v[9]); + v[5] = rot7_256(v[5]); + v[6] = rot7_256(v[6]); + v[7] = rot7_256(v[7]); + v[4] = rot7_256(v[4]); +} + +INLINE void transpose_vecs_256(__m256i vecs[8]) { + // Interleave 32-bit lanes. The low unpack is lanes 00/11/44/55, and the high + // is 22/33/66/77. + __m256i ab_0145 = _mm256_unpacklo_epi32(vecs[0], vecs[1]); + __m256i ab_2367 = _mm256_unpackhi_epi32(vecs[0], vecs[1]); + __m256i cd_0145 = _mm256_unpacklo_epi32(vecs[2], vecs[3]); + __m256i cd_2367 = _mm256_unpackhi_epi32(vecs[2], vecs[3]); + __m256i ef_0145 = _mm256_unpacklo_epi32(vecs[4], vecs[5]); + __m256i ef_2367 = _mm256_unpackhi_epi32(vecs[4], vecs[5]); + __m256i gh_0145 = _mm256_unpacklo_epi32(vecs[6], vecs[7]); + __m256i gh_2367 = _mm256_unpackhi_epi32(vecs[6], vecs[7]); + + // Interleave 64-bit lates. The low unpack is lanes 00/22 and the high is + // 11/33. + __m256i abcd_04 = _mm256_unpacklo_epi64(ab_0145, cd_0145); + __m256i abcd_15 = _mm256_unpackhi_epi64(ab_0145, cd_0145); + __m256i abcd_26 = _mm256_unpacklo_epi64(ab_2367, cd_2367); + __m256i abcd_37 = _mm256_unpackhi_epi64(ab_2367, cd_2367); + __m256i efgh_04 = _mm256_unpacklo_epi64(ef_0145, gh_0145); + __m256i efgh_15 = _mm256_unpackhi_epi64(ef_0145, gh_0145); + __m256i efgh_26 = _mm256_unpacklo_epi64(ef_2367, gh_2367); + __m256i efgh_37 = _mm256_unpackhi_epi64(ef_2367, gh_2367); + + // Interleave 128-bit lanes. + vecs[0] = _mm256_permute2x128_si256(abcd_04, efgh_04, 0x20); + vecs[1] = _mm256_permute2x128_si256(abcd_15, efgh_15, 0x20); + vecs[2] = _mm256_permute2x128_si256(abcd_26, efgh_26, 0x20); + vecs[3] = _mm256_permute2x128_si256(abcd_37, efgh_37, 0x20); + vecs[4] = _mm256_permute2x128_si256(abcd_04, efgh_04, 0x31); + vecs[5] = _mm256_permute2x128_si256(abcd_15, efgh_15, 0x31); + vecs[6] = _mm256_permute2x128_si256(abcd_26, efgh_26, 0x31); + vecs[7] = _mm256_permute2x128_si256(abcd_37, efgh_37, 0x31); +} + +INLINE void transpose_msg_vecs8(const uint8_t *const *inputs, + size_t block_offset, __m256i out[16]) { + out[0] = loadu_256(&inputs[0][block_offset + 0 * sizeof(__m256i)]); + out[1] = loadu_256(&inputs[1][block_offset + 0 * sizeof(__m256i)]); + out[2] = loadu_256(&inputs[2][block_offset + 0 * sizeof(__m256i)]); + out[3] = loadu_256(&inputs[3][block_offset + 0 * sizeof(__m256i)]); + out[4] = loadu_256(&inputs[4][block_offset + 0 * sizeof(__m256i)]); + out[5] = loadu_256(&inputs[5][block_offset + 0 * sizeof(__m256i)]); + out[6] = loadu_256(&inputs[6][block_offset + 0 * sizeof(__m256i)]); + out[7] = loadu_256(&inputs[7][block_offset + 0 * sizeof(__m256i)]); + out[8] = loadu_256(&inputs[0][block_offset + 1 * sizeof(__m256i)]); + out[9] = loadu_256(&inputs[1][block_offset + 1 * sizeof(__m256i)]); + out[10] = loadu_256(&inputs[2][block_offset + 1 * sizeof(__m256i)]); + out[11] = loadu_256(&inputs[3][block_offset + 1 * sizeof(__m256i)]); + out[12] = loadu_256(&inputs[4][block_offset + 1 * sizeof(__m256i)]); + out[13] = loadu_256(&inputs[5][block_offset + 1 * sizeof(__m256i)]); + out[14] = loadu_256(&inputs[6][block_offset + 1 * sizeof(__m256i)]); + out[15] = loadu_256(&inputs[7][block_offset + 1 * sizeof(__m256i)]); + for (size_t i = 0; i < 8; ++i) { + _mm_prefetch((const void *)&inputs[i][block_offset + 256], _MM_HINT_T0); + } + transpose_vecs_256(&out[0]); + transpose_vecs_256(&out[8]); +} + +INLINE void load_counters8(uint64_t counter, bool increment_counter, + __m256i *out_lo, __m256i *out_hi) { + uint64_t mask = (increment_counter ? ~0 : 0); + __m512i mask_vec = _mm512_set1_epi64(mask); + __m512i deltas = _mm512_setr_epi64(0, 1, 2, 3, 4, 5, 6, 7); + deltas = _mm512_and_si512(mask_vec, deltas); + __m512i counters = + _mm512_add_epi64(_mm512_set1_epi64((int64_t)counter), deltas); + *out_lo = _mm512_cvtepi64_epi32(counters); + *out_hi = _mm512_cvtepi64_epi32(_mm512_srli_epi64(counters, 32)); +} + +static +void blake3_hash8_avx512(const uint8_t *const *inputs, size_t blocks, + const uint32_t key[8], uint64_t counter, + bool increment_counter, uint8_t flags, + uint8_t flags_start, uint8_t flags_end, uint8_t *out) { + __m256i h_vecs[8] = { + set1_256(key[0]), set1_256(key[1]), set1_256(key[2]), set1_256(key[3]), + set1_256(key[4]), set1_256(key[5]), set1_256(key[6]), set1_256(key[7]), + }; + __m256i counter_low_vec, counter_high_vec; + load_counters8(counter, increment_counter, &counter_low_vec, + &counter_high_vec); + uint8_t block_flags = flags | flags_start; + + for (size_t block = 0; block < blocks; block++) { + if (block + 1 == blocks) { + block_flags |= flags_end; + } + __m256i block_len_vec = set1_256(BLAKE3_BLOCK_LEN); + __m256i block_flags_vec = set1_256(block_flags); + __m256i msg_vecs[16]; + transpose_msg_vecs8(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs); + + __m256i v[16] = { + h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3], + h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7], + set1_256(IV[0]), set1_256(IV[1]), set1_256(IV[2]), set1_256(IV[3]), + counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec, + }; + round_fn8(v, msg_vecs, 0); + round_fn8(v, msg_vecs, 1); + round_fn8(v, msg_vecs, 2); + round_fn8(v, msg_vecs, 3); + round_fn8(v, msg_vecs, 4); + round_fn8(v, msg_vecs, 5); + round_fn8(v, msg_vecs, 6); + h_vecs[0] = xor_256(v[0], v[8]); + h_vecs[1] = xor_256(v[1], v[9]); + h_vecs[2] = xor_256(v[2], v[10]); + h_vecs[3] = xor_256(v[3], v[11]); + h_vecs[4] = xor_256(v[4], v[12]); + h_vecs[5] = xor_256(v[5], v[13]); + h_vecs[6] = xor_256(v[6], v[14]); + h_vecs[7] = xor_256(v[7], v[15]); + + block_flags = flags; + } + + transpose_vecs_256(h_vecs); + storeu_256(h_vecs[0], &out[0 * sizeof(__m256i)]); + storeu_256(h_vecs[1], &out[1 * sizeof(__m256i)]); + storeu_256(h_vecs[2], &out[2 * sizeof(__m256i)]); + storeu_256(h_vecs[3], &out[3 * sizeof(__m256i)]); + storeu_256(h_vecs[4], &out[4 * sizeof(__m256i)]); + storeu_256(h_vecs[5], &out[5 * sizeof(__m256i)]); + storeu_256(h_vecs[6], &out[6 * sizeof(__m256i)]); + storeu_256(h_vecs[7], &out[7 * sizeof(__m256i)]); +} + +/* + * ---------------------------------------------------------------------------- + * hash16_avx512 + * ---------------------------------------------------------------------------- + */ + +INLINE void round_fn16(__m512i v[16], __m512i m[16], size_t r) { + v[0] = add_512(v[0], m[(size_t)MSG_SCHEDULE[r][0]]); + v[1] = add_512(v[1], m[(size_t)MSG_SCHEDULE[r][2]]); + v[2] = add_512(v[2], m[(size_t)MSG_SCHEDULE[r][4]]); + v[3] = add_512(v[3], m[(size_t)MSG_SCHEDULE[r][6]]); + v[0] = add_512(v[0], v[4]); + v[1] = add_512(v[1], v[5]); + v[2] = add_512(v[2], v[6]); + v[3] = add_512(v[3], v[7]); + v[12] = xor_512(v[12], v[0]); + v[13] = xor_512(v[13], v[1]); + v[14] = xor_512(v[14], v[2]); + v[15] = xor_512(v[15], v[3]); + v[12] = rot16_512(v[12]); + v[13] = rot16_512(v[13]); + v[14] = rot16_512(v[14]); + v[15] = rot16_512(v[15]); + v[8] = add_512(v[8], v[12]); + v[9] = add_512(v[9], v[13]); + v[10] = add_512(v[10], v[14]); + v[11] = add_512(v[11], v[15]); + v[4] = xor_512(v[4], v[8]); + v[5] = xor_512(v[5], v[9]); + v[6] = xor_512(v[6], v[10]); + v[7] = xor_512(v[7], v[11]); + v[4] = rot12_512(v[4]); + v[5] = rot12_512(v[5]); + v[6] = rot12_512(v[6]); + v[7] = rot12_512(v[7]); + v[0] = add_512(v[0], m[(size_t)MSG_SCHEDULE[r][1]]); + v[1] = add_512(v[1], m[(size_t)MSG_SCHEDULE[r][3]]); + v[2] = add_512(v[2], m[(size_t)MSG_SCHEDULE[r][5]]); + v[3] = add_512(v[3], m[(size_t)MSG_SCHEDULE[r][7]]); + v[0] = add_512(v[0], v[4]); + v[1] = add_512(v[1], v[5]); + v[2] = add_512(v[2], v[6]); + v[3] = add_512(v[3], v[7]); + v[12] = xor_512(v[12], v[0]); + v[13] = xor_512(v[13], v[1]); + v[14] = xor_512(v[14], v[2]); + v[15] = xor_512(v[15], v[3]); + v[12] = rot8_512(v[12]); + v[13] = rot8_512(v[13]); + v[14] = rot8_512(v[14]); + v[15] = rot8_512(v[15]); + v[8] = add_512(v[8], v[12]); + v[9] = add_512(v[9], v[13]); + v[10] = add_512(v[10], v[14]); + v[11] = add_512(v[11], v[15]); + v[4] = xor_512(v[4], v[8]); + v[5] = xor_512(v[5], v[9]); + v[6] = xor_512(v[6], v[10]); + v[7] = xor_512(v[7], v[11]); + v[4] = rot7_512(v[4]); + v[5] = rot7_512(v[5]); + v[6] = rot7_512(v[6]); + v[7] = rot7_512(v[7]); + + v[0] = add_512(v[0], m[(size_t)MSG_SCHEDULE[r][8]]); + v[1] = add_512(v[1], m[(size_t)MSG_SCHEDULE[r][10]]); + v[2] = add_512(v[2], m[(size_t)MSG_SCHEDULE[r][12]]); + v[3] = add_512(v[3], m[(size_t)MSG_SCHEDULE[r][14]]); + v[0] = add_512(v[0], v[5]); + v[1] = add_512(v[1], v[6]); + v[2] = add_512(v[2], v[7]); + v[3] = add_512(v[3], v[4]); + v[15] = xor_512(v[15], v[0]); + v[12] = xor_512(v[12], v[1]); + v[13] = xor_512(v[13], v[2]); + v[14] = xor_512(v[14], v[3]); + v[15] = rot16_512(v[15]); + v[12] = rot16_512(v[12]); + v[13] = rot16_512(v[13]); + v[14] = rot16_512(v[14]); + v[10] = add_512(v[10], v[15]); + v[11] = add_512(v[11], v[12]); + v[8] = add_512(v[8], v[13]); + v[9] = add_512(v[9], v[14]); + v[5] = xor_512(v[5], v[10]); + v[6] = xor_512(v[6], v[11]); + v[7] = xor_512(v[7], v[8]); + v[4] = xor_512(v[4], v[9]); + v[5] = rot12_512(v[5]); + v[6] = rot12_512(v[6]); + v[7] = rot12_512(v[7]); + v[4] = rot12_512(v[4]); + v[0] = add_512(v[0], m[(size_t)MSG_SCHEDULE[r][9]]); + v[1] = add_512(v[1], m[(size_t)MSG_SCHEDULE[r][11]]); + v[2] = add_512(v[2], m[(size_t)MSG_SCHEDULE[r][13]]); + v[3] = add_512(v[3], m[(size_t)MSG_SCHEDULE[r][15]]); + v[0] = add_512(v[0], v[5]); + v[1] = add_512(v[1], v[6]); + v[2] = add_512(v[2], v[7]); + v[3] = add_512(v[3], v[4]); + v[15] = xor_512(v[15], v[0]); + v[12] = xor_512(v[12], v[1]); + v[13] = xor_512(v[13], v[2]); + v[14] = xor_512(v[14], v[3]); + v[15] = rot8_512(v[15]); + v[12] = rot8_512(v[12]); + v[13] = rot8_512(v[13]); + v[14] = rot8_512(v[14]); + v[10] = add_512(v[10], v[15]); + v[11] = add_512(v[11], v[12]); + v[8] = add_512(v[8], v[13]); + v[9] = add_512(v[9], v[14]); + v[5] = xor_512(v[5], v[10]); + v[6] = xor_512(v[6], v[11]); + v[7] = xor_512(v[7], v[8]); + v[4] = xor_512(v[4], v[9]); + v[5] = rot7_512(v[5]); + v[6] = rot7_512(v[6]); + v[7] = rot7_512(v[7]); + v[4] = rot7_512(v[4]); +} + +// 0b10001000, or lanes a0/a2/b0/b2 in little-endian order +#define LO_IMM8 0x88 + +INLINE __m512i unpack_lo_128(__m512i a, __m512i b) { + return _mm512_shuffle_i32x4(a, b, LO_IMM8); +} + +// 0b11011101, or lanes a1/a3/b1/b3 in little-endian order +#define HI_IMM8 0xdd + +INLINE __m512i unpack_hi_128(__m512i a, __m512i b) { + return _mm512_shuffle_i32x4(a, b, HI_IMM8); +} + +INLINE void transpose_vecs_512(__m512i vecs[16]) { + // Interleave 32-bit lanes. The _0 unpack is lanes + // 0/0/1/1/4/4/5/5/8/8/9/9/12/12/13/13, and the _2 unpack is lanes + // 2/2/3/3/6/6/7/7/10/10/11/11/14/14/15/15. + __m512i ab_0 = _mm512_unpacklo_epi32(vecs[0], vecs[1]); + __m512i ab_2 = _mm512_unpackhi_epi32(vecs[0], vecs[1]); + __m512i cd_0 = _mm512_unpacklo_epi32(vecs[2], vecs[3]); + __m512i cd_2 = _mm512_unpackhi_epi32(vecs[2], vecs[3]); + __m512i ef_0 = _mm512_unpacklo_epi32(vecs[4], vecs[5]); + __m512i ef_2 = _mm512_unpackhi_epi32(vecs[4], vecs[5]); + __m512i gh_0 = _mm512_unpacklo_epi32(vecs[6], vecs[7]); + __m512i gh_2 = _mm512_unpackhi_epi32(vecs[6], vecs[7]); + __m512i ij_0 = _mm512_unpacklo_epi32(vecs[8], vecs[9]); + __m512i ij_2 = _mm512_unpackhi_epi32(vecs[8], vecs[9]); + __m512i kl_0 = _mm512_unpacklo_epi32(vecs[10], vecs[11]); + __m512i kl_2 = _mm512_unpackhi_epi32(vecs[10], vecs[11]); + __m512i mn_0 = _mm512_unpacklo_epi32(vecs[12], vecs[13]); + __m512i mn_2 = _mm512_unpackhi_epi32(vecs[12], vecs[13]); + __m512i op_0 = _mm512_unpacklo_epi32(vecs[14], vecs[15]); + __m512i op_2 = _mm512_unpackhi_epi32(vecs[14], vecs[15]); + + // Interleave 64-bit lates. The _0 unpack is lanes + // 0/0/0/0/4/4/4/4/8/8/8/8/12/12/12/12, the _1 unpack is lanes + // 1/1/1/1/5/5/5/5/9/9/9/9/13/13/13/13, the _2 unpack is lanes + // 2/2/2/2/6/6/6/6/10/10/10/10/14/14/14/14, and the _3 unpack is lanes + // 3/3/3/3/7/7/7/7/11/11/11/11/15/15/15/15. + __m512i abcd_0 = _mm512_unpacklo_epi64(ab_0, cd_0); + __m512i abcd_1 = _mm512_unpackhi_epi64(ab_0, cd_0); + __m512i abcd_2 = _mm512_unpacklo_epi64(ab_2, cd_2); + __m512i abcd_3 = _mm512_unpackhi_epi64(ab_2, cd_2); + __m512i efgh_0 = _mm512_unpacklo_epi64(ef_0, gh_0); + __m512i efgh_1 = _mm512_unpackhi_epi64(ef_0, gh_0); + __m512i efgh_2 = _mm512_unpacklo_epi64(ef_2, gh_2); + __m512i efgh_3 = _mm512_unpackhi_epi64(ef_2, gh_2); + __m512i ijkl_0 = _mm512_unpacklo_epi64(ij_0, kl_0); + __m512i ijkl_1 = _mm512_unpackhi_epi64(ij_0, kl_0); + __m512i ijkl_2 = _mm512_unpacklo_epi64(ij_2, kl_2); + __m512i ijkl_3 = _mm512_unpackhi_epi64(ij_2, kl_2); + __m512i mnop_0 = _mm512_unpacklo_epi64(mn_0, op_0); + __m512i mnop_1 = _mm512_unpackhi_epi64(mn_0, op_0); + __m512i mnop_2 = _mm512_unpacklo_epi64(mn_2, op_2); + __m512i mnop_3 = _mm512_unpackhi_epi64(mn_2, op_2); + + // Interleave 128-bit lanes. The _0 unpack is + // 0/0/0/0/8/8/8/8/0/0/0/0/8/8/8/8, the _1 unpack is + // 1/1/1/1/9/9/9/9/1/1/1/1/9/9/9/9, and so on. + __m512i abcdefgh_0 = unpack_lo_128(abcd_0, efgh_0); + __m512i abcdefgh_1 = unpack_lo_128(abcd_1, efgh_1); + __m512i abcdefgh_2 = unpack_lo_128(abcd_2, efgh_2); + __m512i abcdefgh_3 = unpack_lo_128(abcd_3, efgh_3); + __m512i abcdefgh_4 = unpack_hi_128(abcd_0, efgh_0); + __m512i abcdefgh_5 = unpack_hi_128(abcd_1, efgh_1); + __m512i abcdefgh_6 = unpack_hi_128(abcd_2, efgh_2); + __m512i abcdefgh_7 = unpack_hi_128(abcd_3, efgh_3); + __m512i ijklmnop_0 = unpack_lo_128(ijkl_0, mnop_0); + __m512i ijklmnop_1 = unpack_lo_128(ijkl_1, mnop_1); + __m512i ijklmnop_2 = unpack_lo_128(ijkl_2, mnop_2); + __m512i ijklmnop_3 = unpack_lo_128(ijkl_3, mnop_3); + __m512i ijklmnop_4 = unpack_hi_128(ijkl_0, mnop_0); + __m512i ijklmnop_5 = unpack_hi_128(ijkl_1, mnop_1); + __m512i ijklmnop_6 = unpack_hi_128(ijkl_2, mnop_2); + __m512i ijklmnop_7 = unpack_hi_128(ijkl_3, mnop_3); + + // Interleave 128-bit lanes again for the final outputs. + vecs[0] = unpack_lo_128(abcdefgh_0, ijklmnop_0); + vecs[1] = unpack_lo_128(abcdefgh_1, ijklmnop_1); + vecs[2] = unpack_lo_128(abcdefgh_2, ijklmnop_2); + vecs[3] = unpack_lo_128(abcdefgh_3, ijklmnop_3); + vecs[4] = unpack_lo_128(abcdefgh_4, ijklmnop_4); + vecs[5] = unpack_lo_128(abcdefgh_5, ijklmnop_5); + vecs[6] = unpack_lo_128(abcdefgh_6, ijklmnop_6); + vecs[7] = unpack_lo_128(abcdefgh_7, ijklmnop_7); + vecs[8] = unpack_hi_128(abcdefgh_0, ijklmnop_0); + vecs[9] = unpack_hi_128(abcdefgh_1, ijklmnop_1); + vecs[10] = unpack_hi_128(abcdefgh_2, ijklmnop_2); + vecs[11] = unpack_hi_128(abcdefgh_3, ijklmnop_3); + vecs[12] = unpack_hi_128(abcdefgh_4, ijklmnop_4); + vecs[13] = unpack_hi_128(abcdefgh_5, ijklmnop_5); + vecs[14] = unpack_hi_128(abcdefgh_6, ijklmnop_6); + vecs[15] = unpack_hi_128(abcdefgh_7, ijklmnop_7); +} + +INLINE void transpose_msg_vecs16(const uint8_t *const *inputs, + size_t block_offset, __m512i out[16]) { + out[0] = loadu_512(&inputs[0][block_offset]); + out[1] = loadu_512(&inputs[1][block_offset]); + out[2] = loadu_512(&inputs[2][block_offset]); + out[3] = loadu_512(&inputs[3][block_offset]); + out[4] = loadu_512(&inputs[4][block_offset]); + out[5] = loadu_512(&inputs[5][block_offset]); + out[6] = loadu_512(&inputs[6][block_offset]); + out[7] = loadu_512(&inputs[7][block_offset]); + out[8] = loadu_512(&inputs[8][block_offset]); + out[9] = loadu_512(&inputs[9][block_offset]); + out[10] = loadu_512(&inputs[10][block_offset]); + out[11] = loadu_512(&inputs[11][block_offset]); + out[12] = loadu_512(&inputs[12][block_offset]); + out[13] = loadu_512(&inputs[13][block_offset]); + out[14] = loadu_512(&inputs[14][block_offset]); + out[15] = loadu_512(&inputs[15][block_offset]); + for (size_t i = 0; i < 16; ++i) { + _mm_prefetch((const void *)&inputs[i][block_offset + 256], _MM_HINT_T0); + } + transpose_vecs_512(out); +} + +INLINE void load_counters16(uint64_t counter, bool increment_counter, + __m512i *out_lo, __m512i *out_hi) { + const __m512i mask = _mm512_set1_epi32(-(int32_t)increment_counter); + const __m512i deltas = _mm512_set_epi32(15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0); + const __m512i masked_deltas = _mm512_and_si512(deltas, mask); + const __m512i low_words = _mm512_add_epi32( + _mm512_set1_epi32((int32_t)counter), + masked_deltas); + // The carry bit is 1 if the high bit of the word was 1 before addition and is + // 0 after. + // NOTE: It would be a bit more natural to use _mm512_cmp_epu32_mask to + // compute the carry bits here, and originally we did, but that intrinsic is + // broken under GCC 5.4. See https://github.com/BLAKE3-team/BLAKE3/issues/271. + const __m512i carries = _mm512_srli_epi32( + _mm512_andnot_si512( + low_words, // 0 after (gets inverted by andnot) + _mm512_set1_epi32((int32_t)counter)), // and 1 before + 31); + const __m512i high_words = _mm512_add_epi32( + _mm512_set1_epi32((int32_t)(counter >> 32)), + carries); + *out_lo = low_words; + *out_hi = high_words; +} + +static +void blake3_hash16_avx512(const uint8_t *const *inputs, size_t blocks, + const uint32_t key[8], uint64_t counter, + bool increment_counter, uint8_t flags, + uint8_t flags_start, uint8_t flags_end, + uint8_t *out) { + __m512i h_vecs[8] = { + set1_512(key[0]), set1_512(key[1]), set1_512(key[2]), set1_512(key[3]), + set1_512(key[4]), set1_512(key[5]), set1_512(key[6]), set1_512(key[7]), + }; + __m512i counter_low_vec, counter_high_vec; + load_counters16(counter, increment_counter, &counter_low_vec, + &counter_high_vec); + uint8_t block_flags = flags | flags_start; + + for (size_t block = 0; block < blocks; block++) { + if (block + 1 == blocks) { + block_flags |= flags_end; + } + __m512i block_len_vec = set1_512(BLAKE3_BLOCK_LEN); + __m512i block_flags_vec = set1_512(block_flags); + __m512i msg_vecs[16]; + transpose_msg_vecs16(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs); + + __m512i v[16] = { + h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3], + h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7], + set1_512(IV[0]), set1_512(IV[1]), set1_512(IV[2]), set1_512(IV[3]), + counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec, + }; + round_fn16(v, msg_vecs, 0); + round_fn16(v, msg_vecs, 1); + round_fn16(v, msg_vecs, 2); + round_fn16(v, msg_vecs, 3); + round_fn16(v, msg_vecs, 4); + round_fn16(v, msg_vecs, 5); + round_fn16(v, msg_vecs, 6); + h_vecs[0] = xor_512(v[0], v[8]); + h_vecs[1] = xor_512(v[1], v[9]); + h_vecs[2] = xor_512(v[2], v[10]); + h_vecs[3] = xor_512(v[3], v[11]); + h_vecs[4] = xor_512(v[4], v[12]); + h_vecs[5] = xor_512(v[5], v[13]); + h_vecs[6] = xor_512(v[6], v[14]); + h_vecs[7] = xor_512(v[7], v[15]); + + block_flags = flags; + } + + // transpose_vecs_512 operates on a 16x16 matrix of words, but we only have 8 + // state vectors. Pad the matrix with zeros. After transposition, store the + // lower half of each vector. + __m512i padded[16] = { + h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3], + h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7], + set1_512(0), set1_512(0), set1_512(0), set1_512(0), + set1_512(0), set1_512(0), set1_512(0), set1_512(0), + }; + transpose_vecs_512(padded); + _mm256_mask_storeu_epi32(&out[0 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[0])); + _mm256_mask_storeu_epi32(&out[1 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[1])); + _mm256_mask_storeu_epi32(&out[2 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[2])); + _mm256_mask_storeu_epi32(&out[3 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[3])); + _mm256_mask_storeu_epi32(&out[4 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[4])); + _mm256_mask_storeu_epi32(&out[5 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[5])); + _mm256_mask_storeu_epi32(&out[6 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[6])); + _mm256_mask_storeu_epi32(&out[7 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[7])); + _mm256_mask_storeu_epi32(&out[8 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[8])); + _mm256_mask_storeu_epi32(&out[9 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[9])); + _mm256_mask_storeu_epi32(&out[10 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[10])); + _mm256_mask_storeu_epi32(&out[11 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[11])); + _mm256_mask_storeu_epi32(&out[12 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[12])); + _mm256_mask_storeu_epi32(&out[13 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[13])); + _mm256_mask_storeu_epi32(&out[14 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[14])); + _mm256_mask_storeu_epi32(&out[15 * sizeof(__m256i)], (__mmask8)-1, _mm512_castsi512_si256(padded[15])); +} + +/* + * ---------------------------------------------------------------------------- + * hash_many_avx512 + * ---------------------------------------------------------------------------- + */ + +INLINE void hash_one_avx512(const uint8_t *input, size_t blocks, + const uint32_t key[8], uint64_t counter, + uint8_t flags, uint8_t flags_start, + uint8_t flags_end, uint8_t out[BLAKE3_OUT_LEN]) { + uint32_t cv[8]; + memcpy(cv, key, BLAKE3_KEY_LEN); + uint8_t block_flags = flags | flags_start; + while (blocks > 0) { + if (blocks == 1) { + block_flags |= flags_end; + } + blake3_compress_in_place_avx512(cv, input, BLAKE3_BLOCK_LEN, counter, + block_flags); + input = &input[BLAKE3_BLOCK_LEN]; + blocks -= 1; + block_flags = flags; + } + memcpy(out, cv, BLAKE3_OUT_LEN); +} + +void blake3_hash_many_avx512(const uint8_t *const *inputs, size_t num_inputs, + size_t blocks, const uint32_t key[8], + uint64_t counter, bool increment_counter, + uint8_t flags, uint8_t flags_start, + uint8_t flags_end, uint8_t *out) { + while (num_inputs >= 16) { + blake3_hash16_avx512(inputs, blocks, key, counter, increment_counter, flags, + flags_start, flags_end, out); + if (increment_counter) { + counter += 16; + } + inputs += 16; + num_inputs -= 16; + out = &out[16 * BLAKE3_OUT_LEN]; + } + while (num_inputs >= 8) { + blake3_hash8_avx512(inputs, blocks, key, counter, increment_counter, flags, + flags_start, flags_end, out); + if (increment_counter) { + counter += 8; + } + inputs += 8; + num_inputs -= 8; + out = &out[8 * BLAKE3_OUT_LEN]; + } + while (num_inputs >= 4) { + blake3_hash4_avx512(inputs, blocks, key, counter, increment_counter, flags, + flags_start, flags_end, out); + if (increment_counter) { + counter += 4; + } + inputs += 4; + num_inputs -= 4; + out = &out[4 * BLAKE3_OUT_LEN]; + } + while (num_inputs > 0) { + hash_one_avx512(inputs[0], blocks, key, counter, flags, flags_start, + flags_end, out); + if (increment_counter) { + counter += 1; + } + inputs += 1; + num_inputs -= 1; + out = &out[BLAKE3_OUT_LEN]; + } +} diff --git a/src/blake3-off-sse2.c b/src/blake3-off-sse2.c new file mode 100644 index 0000000..29c4341 --- /dev/null +++ b/src/blake3-off-sse2.c @@ -0,0 +1,566 @@ +#include "blake3-off-impl.h" + +#include <immintrin.h> + +#define DEGREE 4 + +#define _mm_shuffle_ps2(a, b, c) \ + (_mm_castps_si128( \ + _mm_shuffle_ps(_mm_castsi128_ps(a), _mm_castsi128_ps(b), (c)))) + +INLINE __m128i loadu(const uint8_t src[16]) { + return _mm_loadu_si128((const __m128i *)src); +} + +INLINE void storeu(__m128i src, uint8_t dest[16]) { + _mm_storeu_si128((__m128i *)dest, src); +} + +INLINE __m128i addv(__m128i a, __m128i b) { return _mm_add_epi32(a, b); } + +// Note that clang-format doesn't like the name "xor" for some reason. +INLINE __m128i xorv(__m128i a, __m128i b) { return _mm_xor_si128(a, b); } + +INLINE __m128i set1(uint32_t x) { return _mm_set1_epi32((int32_t)x); } + +INLINE __m128i set4(uint32_t a, uint32_t b, uint32_t c, uint32_t d) { + return _mm_setr_epi32((int32_t)a, (int32_t)b, (int32_t)c, (int32_t)d); +} + +INLINE __m128i rot16(__m128i x) { + return _mm_shufflehi_epi16(_mm_shufflelo_epi16(x, 0xB1), 0xB1); +} + +INLINE __m128i rot12(__m128i x) { + return xorv(_mm_srli_epi32(x, 12), _mm_slli_epi32(x, 32 - 12)); +} + +INLINE __m128i rot8(__m128i x) { + return xorv(_mm_srli_epi32(x, 8), _mm_slli_epi32(x, 32 - 8)); +} + +INLINE __m128i rot7(__m128i x) { + return xorv(_mm_srli_epi32(x, 7), _mm_slli_epi32(x, 32 - 7)); +} + +INLINE void g1(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3, + __m128i m) { + *row0 = addv(addv(*row0, m), *row1); + *row3 = xorv(*row3, *row0); + *row3 = rot16(*row3); + *row2 = addv(*row2, *row3); + *row1 = xorv(*row1, *row2); + *row1 = rot12(*row1); +} + +INLINE void g2(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3, + __m128i m) { + *row0 = addv(addv(*row0, m), *row1); + *row3 = xorv(*row3, *row0); + *row3 = rot8(*row3); + *row2 = addv(*row2, *row3); + *row1 = xorv(*row1, *row2); + *row1 = rot7(*row1); +} + +// Note the optimization here of leaving row1 as the unrotated row, rather than +// row0. All the message loads below are adjusted to compensate for this. See +// discussion at https://github.com/sneves/blake2-avx2/pull/4 +INLINE void diagonalize(__m128i *row0, __m128i *row2, __m128i *row3) { + *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(2, 1, 0, 3)); + *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2)); + *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(0, 3, 2, 1)); +} + +INLINE void undiagonalize(__m128i *row0, __m128i *row2, __m128i *row3) { + *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(0, 3, 2, 1)); + *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2)); + *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(2, 1, 0, 3)); +} + +INLINE __m128i blend_epi16(__m128i a, __m128i b, const int16_t imm8) { + const __m128i bits = _mm_set_epi16(0x80, 0x40, 0x20, 0x10, 0x08, 0x04, 0x02, 0x01); + __m128i mask = _mm_set1_epi16(imm8); + mask = _mm_and_si128(mask, bits); + mask = _mm_cmpeq_epi16(mask, bits); + return _mm_or_si128(_mm_and_si128(mask, b), _mm_andnot_si128(mask, a)); +} + +INLINE void compress_pre(__m128i rows[4], const uint32_t cv[8], + const uint8_t block[BLAKE3_BLOCK_LEN], + uint8_t block_len, uint64_t counter, uint8_t flags) { + rows[0] = loadu((uint8_t *)&cv[0]); + rows[1] = loadu((uint8_t *)&cv[4]); + rows[2] = set4(IV[0], IV[1], IV[2], IV[3]); + rows[3] = set4(counter_low(counter), counter_high(counter), + (uint32_t)block_len, (uint32_t)flags); + + __m128i m0 = loadu(&block[sizeof(__m128i) * 0]); + __m128i m1 = loadu(&block[sizeof(__m128i) * 1]); + __m128i m2 = loadu(&block[sizeof(__m128i) * 2]); + __m128i m3 = loadu(&block[sizeof(__m128i) * 3]); + + __m128i t0, t1, t2, t3, tt; + + // Round 1. The first round permutes the message words from the original + // input order, into the groups that get mixed in parallel. + t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(2, 0, 2, 0)); // 6 4 2 0 + g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); + t1 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 3, 1)); // 7 5 3 1 + g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); + diagonalize(&rows[0], &rows[2], &rows[3]); + t2 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(2, 0, 2, 0)); // 14 12 10 8 + t2 = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2, 1, 0, 3)); // 12 10 8 14 + g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); + t3 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 1, 3, 1)); // 15 13 11 9 + t3 = _mm_shuffle_epi32(t3, _MM_SHUFFLE(2, 1, 0, 3)); // 13 11 9 15 + g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); + undiagonalize(&rows[0], &rows[2], &rows[3]); + m0 = t0; + m1 = t1; + m2 = t2; + m3 = t3; + + // Round 2. This round and all following rounds apply a fixed permutation + // to the message words from the round before. + t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); + t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); + g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); + t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); + tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); + t1 = blend_epi16(tt, t1, 0xCC); + g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); + diagonalize(&rows[0], &rows[2], &rows[3]); + t2 = _mm_unpacklo_epi64(m3, m1); + tt = blend_epi16(t2, m2, 0xC0); + t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); + g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); + t3 = _mm_unpackhi_epi32(m1, m3); + tt = _mm_unpacklo_epi32(m2, t3); + t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); + g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); + undiagonalize(&rows[0], &rows[2], &rows[3]); + m0 = t0; + m1 = t1; + m2 = t2; + m3 = t3; + + // Round 3 + t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); + t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); + g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); + t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); + tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); + t1 = blend_epi16(tt, t1, 0xCC); + g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); + diagonalize(&rows[0], &rows[2], &rows[3]); + t2 = _mm_unpacklo_epi64(m3, m1); + tt = blend_epi16(t2, m2, 0xC0); + t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); + g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); + t3 = _mm_unpackhi_epi32(m1, m3); + tt = _mm_unpacklo_epi32(m2, t3); + t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); + g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); + undiagonalize(&rows[0], &rows[2], &rows[3]); + m0 = t0; + m1 = t1; + m2 = t2; + m3 = t3; + + // Round 4 + t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); + t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); + g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); + t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); + tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); + t1 = blend_epi16(tt, t1, 0xCC); + g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); + diagonalize(&rows[0], &rows[2], &rows[3]); + t2 = _mm_unpacklo_epi64(m3, m1); + tt = blend_epi16(t2, m2, 0xC0); + t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); + g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); + t3 = _mm_unpackhi_epi32(m1, m3); + tt = _mm_unpacklo_epi32(m2, t3); + t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); + g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); + undiagonalize(&rows[0], &rows[2], &rows[3]); + m0 = t0; + m1 = t1; + m2 = t2; + m3 = t3; + + // Round 5 + t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); + t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); + g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); + t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); + tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); + t1 = blend_epi16(tt, t1, 0xCC); + g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); + diagonalize(&rows[0], &rows[2], &rows[3]); + t2 = _mm_unpacklo_epi64(m3, m1); + tt = blend_epi16(t2, m2, 0xC0); + t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); + g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); + t3 = _mm_unpackhi_epi32(m1, m3); + tt = _mm_unpacklo_epi32(m2, t3); + t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); + g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); + undiagonalize(&rows[0], &rows[2], &rows[3]); + m0 = t0; + m1 = t1; + m2 = t2; + m3 = t3; + + // Round 6 + t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); + t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); + g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); + t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); + tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); + t1 = blend_epi16(tt, t1, 0xCC); + g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); + diagonalize(&rows[0], &rows[2], &rows[3]); + t2 = _mm_unpacklo_epi64(m3, m1); + tt = blend_epi16(t2, m2, 0xC0); + t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); + g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); + t3 = _mm_unpackhi_epi32(m1, m3); + tt = _mm_unpacklo_epi32(m2, t3); + t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); + g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); + undiagonalize(&rows[0], &rows[2], &rows[3]); + m0 = t0; + m1 = t1; + m2 = t2; + m3 = t3; + + // Round 7 + t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); + t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); + g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); + t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); + tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); + t1 = blend_epi16(tt, t1, 0xCC); + g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); + diagonalize(&rows[0], &rows[2], &rows[3]); + t2 = _mm_unpacklo_epi64(m3, m1); + tt = blend_epi16(t2, m2, 0xC0); + t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); + g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); + t3 = _mm_unpackhi_epi32(m1, m3); + tt = _mm_unpacklo_epi32(m2, t3); + t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); + g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); + undiagonalize(&rows[0], &rows[2], &rows[3]); +} + +void blake3_compress_in_place_sse2(uint32_t cv[8], + const uint8_t block[BLAKE3_BLOCK_LEN], + uint8_t block_len, uint64_t counter, + uint8_t flags) { + __m128i rows[4]; + compress_pre(rows, cv, block, block_len, counter, flags); + storeu(xorv(rows[0], rows[2]), (uint8_t *)&cv[0]); + storeu(xorv(rows[1], rows[3]), (uint8_t *)&cv[4]); +} + +void blake3_compress_xof_sse2(const uint32_t cv[8], + const uint8_t block[BLAKE3_BLOCK_LEN], + uint8_t block_len, uint64_t counter, + uint8_t flags, uint8_t out[64]) { + __m128i rows[4]; + compress_pre(rows, cv, block, block_len, counter, flags); + storeu(xorv(rows[0], rows[2]), &out[0]); + storeu(xorv(rows[1], rows[3]), &out[16]); + storeu(xorv(rows[2], loadu((uint8_t *)&cv[0])), &out[32]); + storeu(xorv(rows[3], loadu((uint8_t *)&cv[4])), &out[48]); +} + +INLINE void round_fn(__m128i v[16], __m128i m[16], size_t r) { + v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][0]]); + v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][2]]); + v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][4]]); + v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][6]]); + v[0] = addv(v[0], v[4]); + v[1] = addv(v[1], v[5]); + v[2] = addv(v[2], v[6]); + v[3] = addv(v[3], v[7]); + v[12] = xorv(v[12], v[0]); + v[13] = xorv(v[13], v[1]); + v[14] = xorv(v[14], v[2]); + v[15] = xorv(v[15], v[3]); + v[12] = rot16(v[12]); + v[13] = rot16(v[13]); + v[14] = rot16(v[14]); + v[15] = rot16(v[15]); + v[8] = addv(v[8], v[12]); + v[9] = addv(v[9], v[13]); + v[10] = addv(v[10], v[14]); + v[11] = addv(v[11], v[15]); + v[4] = xorv(v[4], v[8]); + v[5] = xorv(v[5], v[9]); + v[6] = xorv(v[6], v[10]); + v[7] = xorv(v[7], v[11]); + v[4] = rot12(v[4]); + v[5] = rot12(v[5]); + v[6] = rot12(v[6]); + v[7] = rot12(v[7]); + v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][1]]); + v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][3]]); + v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][5]]); + v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][7]]); + v[0] = addv(v[0], v[4]); + v[1] = addv(v[1], v[5]); + v[2] = addv(v[2], v[6]); + v[3] = addv(v[3], v[7]); + v[12] = xorv(v[12], v[0]); + v[13] = xorv(v[13], v[1]); + v[14] = xorv(v[14], v[2]); + v[15] = xorv(v[15], v[3]); + v[12] = rot8(v[12]); + v[13] = rot8(v[13]); + v[14] = rot8(v[14]); + v[15] = rot8(v[15]); + v[8] = addv(v[8], v[12]); + v[9] = addv(v[9], v[13]); + v[10] = addv(v[10], v[14]); + v[11] = addv(v[11], v[15]); + v[4] = xorv(v[4], v[8]); + v[5] = xorv(v[5], v[9]); + v[6] = xorv(v[6], v[10]); + v[7] = xorv(v[7], v[11]); + v[4] = rot7(v[4]); + v[5] = rot7(v[5]); + v[6] = rot7(v[6]); + v[7] = rot7(v[7]); + + v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][8]]); + v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][10]]); + v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][12]]); + v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][14]]); + v[0] = addv(v[0], v[5]); + v[1] = addv(v[1], v[6]); + v[2] = addv(v[2], v[7]); + v[3] = addv(v[3], v[4]); + v[15] = xorv(v[15], v[0]); + v[12] = xorv(v[12], v[1]); + v[13] = xorv(v[13], v[2]); + v[14] = xorv(v[14], v[3]); + v[15] = rot16(v[15]); + v[12] = rot16(v[12]); + v[13] = rot16(v[13]); + v[14] = rot16(v[14]); + v[10] = addv(v[10], v[15]); + v[11] = addv(v[11], v[12]); + v[8] = addv(v[8], v[13]); + v[9] = addv(v[9], v[14]); + v[5] = xorv(v[5], v[10]); + v[6] = xorv(v[6], v[11]); + v[7] = xorv(v[7], v[8]); + v[4] = xorv(v[4], v[9]); + v[5] = rot12(v[5]); + v[6] = rot12(v[6]); + v[7] = rot12(v[7]); + v[4] = rot12(v[4]); + v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][9]]); + v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][11]]); + v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][13]]); + v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][15]]); + v[0] = addv(v[0], v[5]); + v[1] = addv(v[1], v[6]); + v[2] = addv(v[2], v[7]); + v[3] = addv(v[3], v[4]); + v[15] = xorv(v[15], v[0]); + v[12] = xorv(v[12], v[1]); + v[13] = xorv(v[13], v[2]); + v[14] = xorv(v[14], v[3]); + v[15] = rot8(v[15]); + v[12] = rot8(v[12]); + v[13] = rot8(v[13]); + v[14] = rot8(v[14]); + v[10] = addv(v[10], v[15]); + v[11] = addv(v[11], v[12]); + v[8] = addv(v[8], v[13]); + v[9] = addv(v[9], v[14]); + v[5] = xorv(v[5], v[10]); + v[6] = xorv(v[6], v[11]); + v[7] = xorv(v[7], v[8]); + v[4] = xorv(v[4], v[9]); + v[5] = rot7(v[5]); + v[6] = rot7(v[6]); + v[7] = rot7(v[7]); + v[4] = rot7(v[4]); +} + +INLINE void transpose_vecs(__m128i vecs[DEGREE]) { + // Interleave 32-bit lates. The low unpack is lanes 00/11 and the high is + // 22/33. Note that this doesn't split the vector into two lanes, as the + // AVX2 counterparts do. + __m128i ab_01 = _mm_unpacklo_epi32(vecs[0], vecs[1]); + __m128i ab_23 = _mm_unpackhi_epi32(vecs[0], vecs[1]); + __m128i cd_01 = _mm_unpacklo_epi32(vecs[2], vecs[3]); + __m128i cd_23 = _mm_unpackhi_epi32(vecs[2], vecs[3]); + + // Interleave 64-bit lanes. + __m128i abcd_0 = _mm_unpacklo_epi64(ab_01, cd_01); + __m128i abcd_1 = _mm_unpackhi_epi64(ab_01, cd_01); + __m128i abcd_2 = _mm_unpacklo_epi64(ab_23, cd_23); + __m128i abcd_3 = _mm_unpackhi_epi64(ab_23, cd_23); + + vecs[0] = abcd_0; + vecs[1] = abcd_1; + vecs[2] = abcd_2; + vecs[3] = abcd_3; +} + +INLINE void transpose_msg_vecs(const uint8_t *const *inputs, + size_t block_offset, __m128i out[16]) { + out[0] = loadu(&inputs[0][block_offset + 0 * sizeof(__m128i)]); + out[1] = loadu(&inputs[1][block_offset + 0 * sizeof(__m128i)]); + out[2] = loadu(&inputs[2][block_offset + 0 * sizeof(__m128i)]); + out[3] = loadu(&inputs[3][block_offset + 0 * sizeof(__m128i)]); + out[4] = loadu(&inputs[0][block_offset + 1 * sizeof(__m128i)]); + out[5] = loadu(&inputs[1][block_offset + 1 * sizeof(__m128i)]); + out[6] = loadu(&inputs[2][block_offset + 1 * sizeof(__m128i)]); + out[7] = loadu(&inputs[3][block_offset + 1 * sizeof(__m128i)]); + out[8] = loadu(&inputs[0][block_offset + 2 * sizeof(__m128i)]); + out[9] = loadu(&inputs[1][block_offset + 2 * sizeof(__m128i)]); + out[10] = loadu(&inputs[2][block_offset + 2 * sizeof(__m128i)]); + out[11] = loadu(&inputs[3][block_offset + 2 * sizeof(__m128i)]); + out[12] = loadu(&inputs[0][block_offset + 3 * sizeof(__m128i)]); + out[13] = loadu(&inputs[1][block_offset + 3 * sizeof(__m128i)]); + out[14] = loadu(&inputs[2][block_offset + 3 * sizeof(__m128i)]); + out[15] = loadu(&inputs[3][block_offset + 3 * sizeof(__m128i)]); + for (size_t i = 0; i < 4; ++i) { + _mm_prefetch((const void *)&inputs[i][block_offset + 256], _MM_HINT_T0); + } + transpose_vecs(&out[0]); + transpose_vecs(&out[4]); + transpose_vecs(&out[8]); + transpose_vecs(&out[12]); +} + +INLINE void load_counters(uint64_t counter, bool increment_counter, + __m128i *out_lo, __m128i *out_hi) { + const __m128i mask = _mm_set1_epi32(-(int32_t)increment_counter); + const __m128i add0 = _mm_set_epi32(3, 2, 1, 0); + const __m128i add1 = _mm_and_si128(mask, add0); + __m128i l = _mm_add_epi32(_mm_set1_epi32((int32_t)counter), add1); + __m128i carry = _mm_cmpgt_epi32(_mm_xor_si128(add1, _mm_set1_epi32(0x80000000)), + _mm_xor_si128( l, _mm_set1_epi32(0x80000000))); + __m128i h = _mm_sub_epi32(_mm_set1_epi32((int32_t)(counter >> 32)), carry); + *out_lo = l; + *out_hi = h; +} + +static +void blake3_hash4_sse2(const uint8_t *const *inputs, size_t blocks, + const uint32_t key[8], uint64_t counter, + bool increment_counter, uint8_t flags, + uint8_t flags_start, uint8_t flags_end, uint8_t *out) { + __m128i h_vecs[8] = { + set1(key[0]), set1(key[1]), set1(key[2]), set1(key[3]), + set1(key[4]), set1(key[5]), set1(key[6]), set1(key[7]), + }; + __m128i counter_low_vec, counter_high_vec; + load_counters(counter, increment_counter, &counter_low_vec, + &counter_high_vec); + uint8_t block_flags = flags | flags_start; + + for (size_t block = 0; block < blocks; block++) { + if (block + 1 == blocks) { + block_flags |= flags_end; + } + __m128i block_len_vec = set1(BLAKE3_BLOCK_LEN); + __m128i block_flags_vec = set1(block_flags); + __m128i msg_vecs[16]; + transpose_msg_vecs(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs); + + __m128i v[16] = { + h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3], + h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7], + set1(IV[0]), set1(IV[1]), set1(IV[2]), set1(IV[3]), + counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec, + }; + round_fn(v, msg_vecs, 0); + round_fn(v, msg_vecs, 1); + round_fn(v, msg_vecs, 2); + round_fn(v, msg_vecs, 3); + round_fn(v, msg_vecs, 4); + round_fn(v, msg_vecs, 5); + round_fn(v, msg_vecs, 6); + h_vecs[0] = xorv(v[0], v[8]); + h_vecs[1] = xorv(v[1], v[9]); + h_vecs[2] = xorv(v[2], v[10]); + h_vecs[3] = xorv(v[3], v[11]); + h_vecs[4] = xorv(v[4], v[12]); + h_vecs[5] = xorv(v[5], v[13]); + h_vecs[6] = xorv(v[6], v[14]); + h_vecs[7] = xorv(v[7], v[15]); + + block_flags = flags; + } + + transpose_vecs(&h_vecs[0]); + transpose_vecs(&h_vecs[4]); + // The first four vecs now contain the first half of each output, and the + // second four vecs contain the second half of each output. + storeu(h_vecs[0], &out[0 * sizeof(__m128i)]); + storeu(h_vecs[4], &out[1 * sizeof(__m128i)]); + storeu(h_vecs[1], &out[2 * sizeof(__m128i)]); + storeu(h_vecs[5], &out[3 * sizeof(__m128i)]); + storeu(h_vecs[2], &out[4 * sizeof(__m128i)]); + storeu(h_vecs[6], &out[5 * sizeof(__m128i)]); + storeu(h_vecs[3], &out[6 * sizeof(__m128i)]); + storeu(h_vecs[7], &out[7 * sizeof(__m128i)]); +} + +INLINE void hash_one_sse2(const uint8_t *input, size_t blocks, + const uint32_t key[8], uint64_t counter, + uint8_t flags, uint8_t flags_start, + uint8_t flags_end, uint8_t out[BLAKE3_OUT_LEN]) { + uint32_t cv[8]; + memcpy(cv, key, BLAKE3_KEY_LEN); + uint8_t block_flags = flags | flags_start; + while (blocks > 0) { + if (blocks == 1) { + block_flags |= flags_end; + } + blake3_compress_in_place_sse2(cv, input, BLAKE3_BLOCK_LEN, counter, + block_flags); + input = &input[BLAKE3_BLOCK_LEN]; + blocks -= 1; + block_flags = flags; + } + memcpy(out, cv, BLAKE3_OUT_LEN); +} + +void blake3_hash_many_sse2(const uint8_t *const *inputs, size_t num_inputs, + size_t blocks, const uint32_t key[8], + uint64_t counter, bool increment_counter, + uint8_t flags, uint8_t flags_start, + uint8_t flags_end, uint8_t *out) { + while (num_inputs >= DEGREE) { + blake3_hash4_sse2(inputs, blocks, key, counter, increment_counter, flags, + flags_start, flags_end, out); + if (increment_counter) { + counter += DEGREE; + } + inputs += DEGREE; + num_inputs -= DEGREE; + out = &out[DEGREE * BLAKE3_OUT_LEN]; + } + while (num_inputs > 0) { + hash_one_sse2(inputs[0], blocks, key, counter, flags, flags_start, + flags_end, out); + if (increment_counter) { + counter += 1; + } + inputs += 1; + num_inputs -= 1; + out = &out[BLAKE3_OUT_LEN]; + } +} diff --git a/src/blake3-off-sse41.c b/src/blake3-off-sse41.c new file mode 100644 index 0000000..2cd4865 --- /dev/null +++ b/src/blake3-off-sse41.c @@ -0,0 +1,560 @@ +#include "blake3-off-impl.h" + +#include <immintrin.h> + +#define DEGREE 4 + +#define _mm_shuffle_ps2(a, b, c) \ + (_mm_castps_si128( \ + _mm_shuffle_ps(_mm_castsi128_ps(a), _mm_castsi128_ps(b), (c)))) + +INLINE __m128i loadu(const uint8_t src[16]) { + return _mm_loadu_si128((const __m128i *)src); +} + +INLINE void storeu(__m128i src, uint8_t dest[16]) { + _mm_storeu_si128((__m128i *)dest, src); +} + +INLINE __m128i addv(__m128i a, __m128i b) { return _mm_add_epi32(a, b); } + +// Note that clang-format doesn't like the name "xor" for some reason. +INLINE __m128i xorv(__m128i a, __m128i b) { return _mm_xor_si128(a, b); } + +INLINE __m128i set1(uint32_t x) { return _mm_set1_epi32((int32_t)x); } + +INLINE __m128i set4(uint32_t a, uint32_t b, uint32_t c, uint32_t d) { + return _mm_setr_epi32((int32_t)a, (int32_t)b, (int32_t)c, (int32_t)d); +} + +INLINE __m128i rot16(__m128i x) { + return _mm_shuffle_epi8( + x, _mm_set_epi8(13, 12, 15, 14, 9, 8, 11, 10, 5, 4, 7, 6, 1, 0, 3, 2)); +} + +INLINE __m128i rot12(__m128i x) { + return xorv(_mm_srli_epi32(x, 12), _mm_slli_epi32(x, 32 - 12)); +} + +INLINE __m128i rot8(__m128i x) { + return _mm_shuffle_epi8( + x, _mm_set_epi8(12, 15, 14, 13, 8, 11, 10, 9, 4, 7, 6, 5, 0, 3, 2, 1)); +} + +INLINE __m128i rot7(__m128i x) { + return xorv(_mm_srli_epi32(x, 7), _mm_slli_epi32(x, 32 - 7)); +} + +INLINE void g1(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3, + __m128i m) { + *row0 = addv(addv(*row0, m), *row1); + *row3 = xorv(*row3, *row0); + *row3 = rot16(*row3); + *row2 = addv(*row2, *row3); + *row1 = xorv(*row1, *row2); + *row1 = rot12(*row1); +} + +INLINE void g2(__m128i *row0, __m128i *row1, __m128i *row2, __m128i *row3, + __m128i m) { + *row0 = addv(addv(*row0, m), *row1); + *row3 = xorv(*row3, *row0); + *row3 = rot8(*row3); + *row2 = addv(*row2, *row3); + *row1 = xorv(*row1, *row2); + *row1 = rot7(*row1); +} + +// Note the optimization here of leaving row1 as the unrotated row, rather than +// row0. All the message loads below are adjusted to compensate for this. See +// discussion at https://github.com/sneves/blake2-avx2/pull/4 +INLINE void diagonalize(__m128i *row0, __m128i *row2, __m128i *row3) { + *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(2, 1, 0, 3)); + *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2)); + *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(0, 3, 2, 1)); +} + +INLINE void undiagonalize(__m128i *row0, __m128i *row2, __m128i *row3) { + *row0 = _mm_shuffle_epi32(*row0, _MM_SHUFFLE(0, 3, 2, 1)); + *row3 = _mm_shuffle_epi32(*row3, _MM_SHUFFLE(1, 0, 3, 2)); + *row2 = _mm_shuffle_epi32(*row2, _MM_SHUFFLE(2, 1, 0, 3)); +} + +INLINE void compress_pre(__m128i rows[4], const uint32_t cv[8], + const uint8_t block[BLAKE3_BLOCK_LEN], + uint8_t block_len, uint64_t counter, uint8_t flags) { + rows[0] = loadu((uint8_t *)&cv[0]); + rows[1] = loadu((uint8_t *)&cv[4]); + rows[2] = set4(IV[0], IV[1], IV[2], IV[3]); + rows[3] = set4(counter_low(counter), counter_high(counter), + (uint32_t)block_len, (uint32_t)flags); + + __m128i m0 = loadu(&block[sizeof(__m128i) * 0]); + __m128i m1 = loadu(&block[sizeof(__m128i) * 1]); + __m128i m2 = loadu(&block[sizeof(__m128i) * 2]); + __m128i m3 = loadu(&block[sizeof(__m128i) * 3]); + + __m128i t0, t1, t2, t3, tt; + + // Round 1. The first round permutes the message words from the original + // input order, into the groups that get mixed in parallel. + t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(2, 0, 2, 0)); // 6 4 2 0 + g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); + t1 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 3, 1)); // 7 5 3 1 + g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); + diagonalize(&rows[0], &rows[2], &rows[3]); + t2 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(2, 0, 2, 0)); // 14 12 10 8 + t2 = _mm_shuffle_epi32(t2, _MM_SHUFFLE(2, 1, 0, 3)); // 12 10 8 14 + g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); + t3 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 1, 3, 1)); // 15 13 11 9 + t3 = _mm_shuffle_epi32(t3, _MM_SHUFFLE(2, 1, 0, 3)); // 13 11 9 15 + g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); + undiagonalize(&rows[0], &rows[2], &rows[3]); + m0 = t0; + m1 = t1; + m2 = t2; + m3 = t3; + + // Round 2. This round and all following rounds apply a fixed permutation + // to the message words from the round before. + t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); + t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); + g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); + t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); + tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); + t1 = _mm_blend_epi16(tt, t1, 0xCC); + g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); + diagonalize(&rows[0], &rows[2], &rows[3]); + t2 = _mm_unpacklo_epi64(m3, m1); + tt = _mm_blend_epi16(t2, m2, 0xC0); + t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); + g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); + t3 = _mm_unpackhi_epi32(m1, m3); + tt = _mm_unpacklo_epi32(m2, t3); + t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); + g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); + undiagonalize(&rows[0], &rows[2], &rows[3]); + m0 = t0; + m1 = t1; + m2 = t2; + m3 = t3; + + // Round 3 + t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); + t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); + g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); + t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); + tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); + t1 = _mm_blend_epi16(tt, t1, 0xCC); + g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); + diagonalize(&rows[0], &rows[2], &rows[3]); + t2 = _mm_unpacklo_epi64(m3, m1); + tt = _mm_blend_epi16(t2, m2, 0xC0); + t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); + g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); + t3 = _mm_unpackhi_epi32(m1, m3); + tt = _mm_unpacklo_epi32(m2, t3); + t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); + g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); + undiagonalize(&rows[0], &rows[2], &rows[3]); + m0 = t0; + m1 = t1; + m2 = t2; + m3 = t3; + + // Round 4 + t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); + t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); + g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); + t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); + tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); + t1 = _mm_blend_epi16(tt, t1, 0xCC); + g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); + diagonalize(&rows[0], &rows[2], &rows[3]); + t2 = _mm_unpacklo_epi64(m3, m1); + tt = _mm_blend_epi16(t2, m2, 0xC0); + t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); + g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); + t3 = _mm_unpackhi_epi32(m1, m3); + tt = _mm_unpacklo_epi32(m2, t3); + t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); + g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); + undiagonalize(&rows[0], &rows[2], &rows[3]); + m0 = t0; + m1 = t1; + m2 = t2; + m3 = t3; + + // Round 5 + t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); + t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); + g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); + t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); + tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); + t1 = _mm_blend_epi16(tt, t1, 0xCC); + g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); + diagonalize(&rows[0], &rows[2], &rows[3]); + t2 = _mm_unpacklo_epi64(m3, m1); + tt = _mm_blend_epi16(t2, m2, 0xC0); + t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); + g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); + t3 = _mm_unpackhi_epi32(m1, m3); + tt = _mm_unpacklo_epi32(m2, t3); + t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); + g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); + undiagonalize(&rows[0], &rows[2], &rows[3]); + m0 = t0; + m1 = t1; + m2 = t2; + m3 = t3; + + // Round 6 + t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); + t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); + g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); + t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); + tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); + t1 = _mm_blend_epi16(tt, t1, 0xCC); + g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); + diagonalize(&rows[0], &rows[2], &rows[3]); + t2 = _mm_unpacklo_epi64(m3, m1); + tt = _mm_blend_epi16(t2, m2, 0xC0); + t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); + g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); + t3 = _mm_unpackhi_epi32(m1, m3); + tt = _mm_unpacklo_epi32(m2, t3); + t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); + g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); + undiagonalize(&rows[0], &rows[2], &rows[3]); + m0 = t0; + m1 = t1; + m2 = t2; + m3 = t3; + + // Round 7 + t0 = _mm_shuffle_ps2(m0, m1, _MM_SHUFFLE(3, 1, 1, 2)); + t0 = _mm_shuffle_epi32(t0, _MM_SHUFFLE(0, 3, 2, 1)); + g1(&rows[0], &rows[1], &rows[2], &rows[3], t0); + t1 = _mm_shuffle_ps2(m2, m3, _MM_SHUFFLE(3, 3, 2, 2)); + tt = _mm_shuffle_epi32(m0, _MM_SHUFFLE(0, 0, 3, 3)); + t1 = _mm_blend_epi16(tt, t1, 0xCC); + g2(&rows[0], &rows[1], &rows[2], &rows[3], t1); + diagonalize(&rows[0], &rows[2], &rows[3]); + t2 = _mm_unpacklo_epi64(m3, m1); + tt = _mm_blend_epi16(t2, m2, 0xC0); + t2 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(1, 3, 2, 0)); + g1(&rows[0], &rows[1], &rows[2], &rows[3], t2); + t3 = _mm_unpackhi_epi32(m1, m3); + tt = _mm_unpacklo_epi32(m2, t3); + t3 = _mm_shuffle_epi32(tt, _MM_SHUFFLE(0, 1, 3, 2)); + g2(&rows[0], &rows[1], &rows[2], &rows[3], t3); + undiagonalize(&rows[0], &rows[2], &rows[3]); +} + +void blake3_compress_in_place_sse41(uint32_t cv[8], + const uint8_t block[BLAKE3_BLOCK_LEN], + uint8_t block_len, uint64_t counter, + uint8_t flags) { + __m128i rows[4]; + compress_pre(rows, cv, block, block_len, counter, flags); + storeu(xorv(rows[0], rows[2]), (uint8_t *)&cv[0]); + storeu(xorv(rows[1], rows[3]), (uint8_t *)&cv[4]); +} + +void blake3_compress_xof_sse41(const uint32_t cv[8], + const uint8_t block[BLAKE3_BLOCK_LEN], + uint8_t block_len, uint64_t counter, + uint8_t flags, uint8_t out[64]) { + __m128i rows[4]; + compress_pre(rows, cv, block, block_len, counter, flags); + storeu(xorv(rows[0], rows[2]), &out[0]); + storeu(xorv(rows[1], rows[3]), &out[16]); + storeu(xorv(rows[2], loadu((uint8_t *)&cv[0])), &out[32]); + storeu(xorv(rows[3], loadu((uint8_t *)&cv[4])), &out[48]); +} + +INLINE void round_fn(__m128i v[16], __m128i m[16], size_t r) { + v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][0]]); + v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][2]]); + v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][4]]); + v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][6]]); + v[0] = addv(v[0], v[4]); + v[1] = addv(v[1], v[5]); + v[2] = addv(v[2], v[6]); + v[3] = addv(v[3], v[7]); + v[12] = xorv(v[12], v[0]); + v[13] = xorv(v[13], v[1]); + v[14] = xorv(v[14], v[2]); + v[15] = xorv(v[15], v[3]); + v[12] = rot16(v[12]); + v[13] = rot16(v[13]); + v[14] = rot16(v[14]); + v[15] = rot16(v[15]); + v[8] = addv(v[8], v[12]); + v[9] = addv(v[9], v[13]); + v[10] = addv(v[10], v[14]); + v[11] = addv(v[11], v[15]); + v[4] = xorv(v[4], v[8]); + v[5] = xorv(v[5], v[9]); + v[6] = xorv(v[6], v[10]); + v[7] = xorv(v[7], v[11]); + v[4] = rot12(v[4]); + v[5] = rot12(v[5]); + v[6] = rot12(v[6]); + v[7] = rot12(v[7]); + v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][1]]); + v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][3]]); + v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][5]]); + v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][7]]); + v[0] = addv(v[0], v[4]); + v[1] = addv(v[1], v[5]); + v[2] = addv(v[2], v[6]); + v[3] = addv(v[3], v[7]); + v[12] = xorv(v[12], v[0]); + v[13] = xorv(v[13], v[1]); + v[14] = xorv(v[14], v[2]); + v[15] = xorv(v[15], v[3]); + v[12] = rot8(v[12]); + v[13] = rot8(v[13]); + v[14] = rot8(v[14]); + v[15] = rot8(v[15]); + v[8] = addv(v[8], v[12]); + v[9] = addv(v[9], v[13]); + v[10] = addv(v[10], v[14]); + v[11] = addv(v[11], v[15]); + v[4] = xorv(v[4], v[8]); + v[5] = xorv(v[5], v[9]); + v[6] = xorv(v[6], v[10]); + v[7] = xorv(v[7], v[11]); + v[4] = rot7(v[4]); + v[5] = rot7(v[5]); + v[6] = rot7(v[6]); + v[7] = rot7(v[7]); + + v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][8]]); + v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][10]]); + v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][12]]); + v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][14]]); + v[0] = addv(v[0], v[5]); + v[1] = addv(v[1], v[6]); + v[2] = addv(v[2], v[7]); + v[3] = addv(v[3], v[4]); + v[15] = xorv(v[15], v[0]); + v[12] = xorv(v[12], v[1]); + v[13] = xorv(v[13], v[2]); + v[14] = xorv(v[14], v[3]); + v[15] = rot16(v[15]); + v[12] = rot16(v[12]); + v[13] = rot16(v[13]); + v[14] = rot16(v[14]); + v[10] = addv(v[10], v[15]); + v[11] = addv(v[11], v[12]); + v[8] = addv(v[8], v[13]); + v[9] = addv(v[9], v[14]); + v[5] = xorv(v[5], v[10]); + v[6] = xorv(v[6], v[11]); + v[7] = xorv(v[7], v[8]); + v[4] = xorv(v[4], v[9]); + v[5] = rot12(v[5]); + v[6] = rot12(v[6]); + v[7] = rot12(v[7]); + v[4] = rot12(v[4]); + v[0] = addv(v[0], m[(size_t)MSG_SCHEDULE[r][9]]); + v[1] = addv(v[1], m[(size_t)MSG_SCHEDULE[r][11]]); + v[2] = addv(v[2], m[(size_t)MSG_SCHEDULE[r][13]]); + v[3] = addv(v[3], m[(size_t)MSG_SCHEDULE[r][15]]); + v[0] = addv(v[0], v[5]); + v[1] = addv(v[1], v[6]); + v[2] = addv(v[2], v[7]); + v[3] = addv(v[3], v[4]); + v[15] = xorv(v[15], v[0]); + v[12] = xorv(v[12], v[1]); + v[13] = xorv(v[13], v[2]); + v[14] = xorv(v[14], v[3]); + v[15] = rot8(v[15]); + v[12] = rot8(v[12]); + v[13] = rot8(v[13]); + v[14] = rot8(v[14]); + v[10] = addv(v[10], v[15]); + v[11] = addv(v[11], v[12]); + v[8] = addv(v[8], v[13]); + v[9] = addv(v[9], v[14]); + v[5] = xorv(v[5], v[10]); + v[6] = xorv(v[6], v[11]); + v[7] = xorv(v[7], v[8]); + v[4] = xorv(v[4], v[9]); + v[5] = rot7(v[5]); + v[6] = rot7(v[6]); + v[7] = rot7(v[7]); + v[4] = rot7(v[4]); +} + +INLINE void transpose_vecs(__m128i vecs[DEGREE]) { + // Interleave 32-bit lates. The low unpack is lanes 00/11 and the high is + // 22/33. Note that this doesn't split the vector into two lanes, as the + // AVX2 counterparts do. + __m128i ab_01 = _mm_unpacklo_epi32(vecs[0], vecs[1]); + __m128i ab_23 = _mm_unpackhi_epi32(vecs[0], vecs[1]); + __m128i cd_01 = _mm_unpacklo_epi32(vecs[2], vecs[3]); + __m128i cd_23 = _mm_unpackhi_epi32(vecs[2], vecs[3]); + + // Interleave 64-bit lanes. + __m128i abcd_0 = _mm_unpacklo_epi64(ab_01, cd_01); + __m128i abcd_1 = _mm_unpackhi_epi64(ab_01, cd_01); + __m128i abcd_2 = _mm_unpacklo_epi64(ab_23, cd_23); + __m128i abcd_3 = _mm_unpackhi_epi64(ab_23, cd_23); + + vecs[0] = abcd_0; + vecs[1] = abcd_1; + vecs[2] = abcd_2; + vecs[3] = abcd_3; +} + +INLINE void transpose_msg_vecs(const uint8_t *const *inputs, + size_t block_offset, __m128i out[16]) { + out[0] = loadu(&inputs[0][block_offset + 0 * sizeof(__m128i)]); + out[1] = loadu(&inputs[1][block_offset + 0 * sizeof(__m128i)]); + out[2] = loadu(&inputs[2][block_offset + 0 * sizeof(__m128i)]); + out[3] = loadu(&inputs[3][block_offset + 0 * sizeof(__m128i)]); + out[4] = loadu(&inputs[0][block_offset + 1 * sizeof(__m128i)]); + out[5] = loadu(&inputs[1][block_offset + 1 * sizeof(__m128i)]); + out[6] = loadu(&inputs[2][block_offset + 1 * sizeof(__m128i)]); + out[7] = loadu(&inputs[3][block_offset + 1 * sizeof(__m128i)]); + out[8] = loadu(&inputs[0][block_offset + 2 * sizeof(__m128i)]); + out[9] = loadu(&inputs[1][block_offset + 2 * sizeof(__m128i)]); + out[10] = loadu(&inputs[2][block_offset + 2 * sizeof(__m128i)]); + out[11] = loadu(&inputs[3][block_offset + 2 * sizeof(__m128i)]); + out[12] = loadu(&inputs[0][block_offset + 3 * sizeof(__m128i)]); + out[13] = loadu(&inputs[1][block_offset + 3 * sizeof(__m128i)]); + out[14] = loadu(&inputs[2][block_offset + 3 * sizeof(__m128i)]); + out[15] = loadu(&inputs[3][block_offset + 3 * sizeof(__m128i)]); + for (size_t i = 0; i < 4; ++i) { + _mm_prefetch((const void *)&inputs[i][block_offset + 256], _MM_HINT_T0); + } + transpose_vecs(&out[0]); + transpose_vecs(&out[4]); + transpose_vecs(&out[8]); + transpose_vecs(&out[12]); +} + +INLINE void load_counters(uint64_t counter, bool increment_counter, + __m128i *out_lo, __m128i *out_hi) { + const __m128i mask = _mm_set1_epi32(-(int32_t)increment_counter); + const __m128i add0 = _mm_set_epi32(3, 2, 1, 0); + const __m128i add1 = _mm_and_si128(mask, add0); + __m128i l = _mm_add_epi32(_mm_set1_epi32((int32_t)counter), add1); + __m128i carry = _mm_cmpgt_epi32(_mm_xor_si128(add1, _mm_set1_epi32(0x80000000)), + _mm_xor_si128( l, _mm_set1_epi32(0x80000000))); + __m128i h = _mm_sub_epi32(_mm_set1_epi32((int32_t)(counter >> 32)), carry); + *out_lo = l; + *out_hi = h; +} + +static +void blake3_hash4_sse41(const uint8_t *const *inputs, size_t blocks, + const uint32_t key[8], uint64_t counter, + bool increment_counter, uint8_t flags, + uint8_t flags_start, uint8_t flags_end, uint8_t *out) { + __m128i h_vecs[8] = { + set1(key[0]), set1(key[1]), set1(key[2]), set1(key[3]), + set1(key[4]), set1(key[5]), set1(key[6]), set1(key[7]), + }; + __m128i counter_low_vec, counter_high_vec; + load_counters(counter, increment_counter, &counter_low_vec, + &counter_high_vec); + uint8_t block_flags = flags | flags_start; + + for (size_t block = 0; block < blocks; block++) { + if (block + 1 == blocks) { + block_flags |= flags_end; + } + __m128i block_len_vec = set1(BLAKE3_BLOCK_LEN); + __m128i block_flags_vec = set1(block_flags); + __m128i msg_vecs[16]; + transpose_msg_vecs(inputs, block * BLAKE3_BLOCK_LEN, msg_vecs); + + __m128i v[16] = { + h_vecs[0], h_vecs[1], h_vecs[2], h_vecs[3], + h_vecs[4], h_vecs[5], h_vecs[6], h_vecs[7], + set1(IV[0]), set1(IV[1]), set1(IV[2]), set1(IV[3]), + counter_low_vec, counter_high_vec, block_len_vec, block_flags_vec, + }; + round_fn(v, msg_vecs, 0); + round_fn(v, msg_vecs, 1); + round_fn(v, msg_vecs, 2); + round_fn(v, msg_vecs, 3); + round_fn(v, msg_vecs, 4); + round_fn(v, msg_vecs, 5); + round_fn(v, msg_vecs, 6); + h_vecs[0] = xorv(v[0], v[8]); + h_vecs[1] = xorv(v[1], v[9]); + h_vecs[2] = xorv(v[2], v[10]); + h_vecs[3] = xorv(v[3], v[11]); + h_vecs[4] = xorv(v[4], v[12]); + h_vecs[5] = xorv(v[5], v[13]); + h_vecs[6] = xorv(v[6], v[14]); + h_vecs[7] = xorv(v[7], v[15]); + + block_flags = flags; + } + + transpose_vecs(&h_vecs[0]); + transpose_vecs(&h_vecs[4]); + // The first four vecs now contain the first half of each output, and the + // second four vecs contain the second half of each output. + storeu(h_vecs[0], &out[0 * sizeof(__m128i)]); + storeu(h_vecs[4], &out[1 * sizeof(__m128i)]); + storeu(h_vecs[1], &out[2 * sizeof(__m128i)]); + storeu(h_vecs[5], &out[3 * sizeof(__m128i)]); + storeu(h_vecs[2], &out[4 * sizeof(__m128i)]); + storeu(h_vecs[6], &out[5 * sizeof(__m128i)]); + storeu(h_vecs[3], &out[6 * sizeof(__m128i)]); + storeu(h_vecs[7], &out[7 * sizeof(__m128i)]); +} + +INLINE void hash_one_sse41(const uint8_t *input, size_t blocks, + const uint32_t key[8], uint64_t counter, + uint8_t flags, uint8_t flags_start, + uint8_t flags_end, uint8_t out[BLAKE3_OUT_LEN]) { + uint32_t cv[8]; + memcpy(cv, key, BLAKE3_KEY_LEN); + uint8_t block_flags = flags | flags_start; + while (blocks > 0) { + if (blocks == 1) { + block_flags |= flags_end; + } + blake3_compress_in_place_sse41(cv, input, BLAKE3_BLOCK_LEN, counter, + block_flags); + input = &input[BLAKE3_BLOCK_LEN]; + blocks -= 1; + block_flags = flags; + } + memcpy(out, cv, BLAKE3_OUT_LEN); +} + +void blake3_hash_many_sse41(const uint8_t *const *inputs, size_t num_inputs, + size_t blocks, const uint32_t key[8], + uint64_t counter, bool increment_counter, + uint8_t flags, uint8_t flags_start, + uint8_t flags_end, uint8_t *out) { + while (num_inputs >= DEGREE) { + blake3_hash4_sse41(inputs, blocks, key, counter, increment_counter, flags, + flags_start, flags_end, out); + if (increment_counter) { + counter += DEGREE; + } + inputs += DEGREE; + num_inputs -= DEGREE; + out = &out[DEGREE * BLAKE3_OUT_LEN]; + } + while (num_inputs > 0) { + hash_one_sse41(inputs[0], blocks, key, counter, flags, flags_start, + flags_end, out); + if (increment_counter) { + counter += 1; + } + inputs += 1; + num_inputs -= 1; + out = &out[BLAKE3_OUT_LEN]; + } +}