/* This file is part of limb https://lila.oss/limb
* Copyright (C) 2023 Olivier Brunel jjk@jjacky.com */
/* Based on RHash: http://rhash.sourceforge.net/
* Based on The Keccak SHA-3 submission. Submission to NIST (Round 3), 2011
* by Guido Bertoni, Joan Daemen, Michaƫl Peeters and Gilles Van Assche
* Copyright (c) 2013 Aleksey Kravchenko */
/* SPDX-License-Identifier: 0BSD */
#include <assert.h>
#include <string.h>
#include "sha3/sha3.h"
#define NumberOfRounds 24
/* SHA3 (Keccak) constants for 24 rounds */
static u64 keccak_round_constants[NumberOfRounds] = {
I64(0x0000000000000001), I64(0x0000000000008082), I64(0x800000000000808A), I64(0x8000000080008000),
I64(0x000000000000808B), I64(0x0000000080000001), I64(0x8000000080008081), I64(0x8000000000008009),
I64(0x000000000000008A), I64(0x0000000000000088), I64(0x0000000080008009), I64(0x000000008000000A),
I64(0x000000008000808B), I64(0x800000000000008B), I64(0x8000000000008089), I64(0x8000000000008003),
I64(0x8000000000008002), I64(0x8000000000000080), I64(0x000000000000800A), I64(0x800000008000000A),
I64(0x8000000080008081), I64(0x8000000000008080), I64(0x0000000080000001), I64(0x8000000080008008)
};
#define XORED_A(i) A[(i)] ^ A[(i) + 5] ^ A[(i) + 10] ^ A[(i) + 15] ^ A[(i) + 20]
#define THETA_STEP(i) \
A[(i)] ^= D[(i)]; \
A[(i) + 5] ^= D[(i)]; \
A[(i) + 10] ^= D[(i)]; \
A[(i) + 15] ^= D[(i)]; \
A[(i) + 20] ^= D[(i)] \
/* Keccak theta() transformation */
static void
keccak_theta(u64 *A)
{
u64 D[5];
D[0] = ROTL64(XORED_A(1), 1) ^ XORED_A(4);
D[1] = ROTL64(XORED_A(2), 1) ^ XORED_A(0);
D[2] = ROTL64(XORED_A(3), 1) ^ XORED_A(1);
D[3] = ROTL64(XORED_A(4), 1) ^ XORED_A(2);
D[4] = ROTL64(XORED_A(0), 1) ^ XORED_A(3);
THETA_STEP(0);
THETA_STEP(1);
THETA_STEP(2);
THETA_STEP(3);
THETA_STEP(4);
}
/* Keccak pi() transformation */
static void
keccak_pi(u64 *A)
{
u64 A1;
A1 = A[1];
A[ 1] = A[ 6];
A[ 6] = A[ 9];
A[ 9] = A[22];
A[22] = A[14];
A[14] = A[20];
A[20] = A[ 2];
A[ 2] = A[12];
A[12] = A[13];
A[13] = A[19];
A[19] = A[23];
A[23] = A[15];
A[15] = A[ 4];
A[ 4] = A[24];
A[24] = A[21];
A[21] = A[ 8];
A[ 8] = A[16];
A[16] = A[ 5];
A[ 5] = A[ 3];
A[ 3] = A[18];
A[18] = A[17];
A[17] = A[11];
A[11] = A[ 7];
A[ 7] = A[10];
A[10] = A1;
/* note: A[ 0] is left as is */
}
#define CHI_STEP(i) \
A0 = A[0 + (i)]; \
A1 = A[1 + (i)]; \
A[0 + (i)] ^= ~A1 & A[2 + (i)]; \
A[1 + (i)] ^= ~A[2 + (i)] & A[3 + (i)]; \
A[2 + (i)] ^= ~A[3 + (i)] & A[4 + (i)]; \
A[3 + (i)] ^= ~A[4 + (i)] & A0; \
A[4 + (i)] ^= ~A0 & A1 \
/* Keccak chi() transformation */
static void
keccak_chi(u64 *A)
{
u64 A0, A1;
CHI_STEP(0);
CHI_STEP(5);
CHI_STEP(10);
CHI_STEP(15);
CHI_STEP(20);
}
static void
rhash_sha3_permutation(u64 *state)
{
int round;
for (round = 0; round < NumberOfRounds; round++)
{
keccak_theta(state);
/* apply Keccak rho() transformation */
state[ 1] = ROTL64(state[ 1], 1);
state[ 2] = ROTL64(state[ 2], 62);
state[ 3] = ROTL64(state[ 3], 28);
state[ 4] = ROTL64(state[ 4], 27);
state[ 5] = ROTL64(state[ 5], 36);
state[ 6] = ROTL64(state[ 6], 44);
state[ 7] = ROTL64(state[ 7], 6);
state[ 8] = ROTL64(state[ 8], 55);
state[ 9] = ROTL64(state[ 9], 20);
state[10] = ROTL64(state[10], 3);
state[11] = ROTL64(state[11], 10);
state[12] = ROTL64(state[12], 43);
state[13] = ROTL64(state[13], 25);
state[14] = ROTL64(state[14], 39);
state[15] = ROTL64(state[15], 41);
state[16] = ROTL64(state[16], 45);
state[17] = ROTL64(state[17], 15);
state[18] = ROTL64(state[18], 21);
state[19] = ROTL64(state[19], 8);
state[20] = ROTL64(state[20], 18);
state[21] = ROTL64(state[21], 2);
state[22] = ROTL64(state[22], 61);
state[23] = ROTL64(state[23], 56);
state[24] = ROTL64(state[24], 14);
keccak_pi(state);
keccak_chi(state);
/* apply iota(state, round) */
*state ^= keccak_round_constants[round];
}
}
/**
* The core transformation. Process the specified block of data.
*
* @param hash the algorithm state
* @param block the message block to process
* @param block_size the size of the processed block in bytes
*/
void
rhash_sha3_process_block(u64 hash[25], const u64 *block, size_t block_size)
{
/* expanded loop */
hash[ 0] ^= le2me_64(block[ 0]);
hash[ 1] ^= le2me_64(block[ 1]);
hash[ 2] ^= le2me_64(block[ 2]);
hash[ 3] ^= le2me_64(block[ 3]);
hash[ 4] ^= le2me_64(block[ 4]);
hash[ 5] ^= le2me_64(block[ 5]);
hash[ 6] ^= le2me_64(block[ 6]);
hash[ 7] ^= le2me_64(block[ 7]);
hash[ 8] ^= le2me_64(block[ 8]);
/* if not sha3-512 */
if (block_size > 72) {
hash[ 9] ^= le2me_64(block[ 9]);
hash[10] ^= le2me_64(block[10]);
hash[11] ^= le2me_64(block[11]);
hash[12] ^= le2me_64(block[12]);
/* if not sha3-384 */
if (block_size > 104) {
hash[13] ^= le2me_64(block[13]);
hash[14] ^= le2me_64(block[14]);
hash[15] ^= le2me_64(block[15]);
hash[16] ^= le2me_64(block[16]);
/* if not sha3-256 */
if (block_size > 136) {
hash[17] ^= le2me_64(block[17]);
/* if not sha3-224 */
if (block_size > 144) {
hash[18] ^= le2me_64(block[18]);
hash[19] ^= le2me_64(block[19]);
hash[20] ^= le2me_64(block[20]);
hash[21] ^= le2me_64(block[21]);
hash[22] ^= le2me_64(block[22]);
hash[23] ^= le2me_64(block[23]);
hash[24] ^= le2me_64(block[24]);
}
}
}
}
/* make a permutation of the hash */
rhash_sha3_permutation(hash);
}