author | Olivier Brunel
<jjk@jjacky.com> 2023-02-25 16:45:46 UTC |
committer | Olivier Brunel
<jjk@jjacky.com> 2023-02-25 16:50:16 UTC |
parent | 0bc778f0a5c0a30dcbf8be511590f706a46dd367 |
doc/hlookup.3.md | +49 | -0 |
include/limb/hlookup.h | +11 | -0 |
meta/AUTHORS | +1 | -0 |
meta/libs/limb | +4 | -0 |
src/hlookup.c | +326 | -0 |
src/hlookup32.c | +9 | -0 |
src/hlookup64.c | +11 | -0 |
diff --git a/doc/hlookup.3.md b/doc/hlookup.3.md new file mode 100644 index 0000000..9d41c98 --- /dev/null +++ b/doc/hlookup.3.md @@ -0,0 +1,49 @@ +% limb manual +% hlookup(3) + +# NAME + +hlookup, hlookup32, hlookup64 - compute the hash of a given block of data + + +# SYNOPSIS + + #include <limb/hlookup.h> + +```pre hl +void hlookup(u32 *<em>main</em>, u32 *<em>second</em>, const void *<em>data</em>, size_t <em>dlen</em>) +u32 hlookup32(const void *<em>data</em>, size_t <em>dlen</em>) +u64 hlookup64(const void *<em>data</em>, size_t <em>dlen</em>) +``` + +# DESCRIPTION + +These functions are designed to compute 32bit hashes of the given block of data +pointed by `data` of length `dlen`. Resulting hashes are aimed for use in hash +table lookups, e.g. with [hmap_set](3), or anything where one collision in 2^32 +is acceptable, they are *not* meant to be used for cryptographic purposes. +See [sha3](3) or [blake3](3) for such use cases. + +The `hlookup`() function calculates two 32bit hashes at once. You can either +only use the main one, switch to the second one should the main one not please +you, or combine them into a 64bit value/hash. + +It is allowed for `second` to be NULL if you only need one hash. `main` +however obvisouly cannot be NULL. + +Both `main` and `second` (when not NULL) should be initialized with an initial +value used as seed (can be zero), and will be set to the resulting hashes. + + +For convenience, the `hlookup32`() and `hlookup64`() functions can be used to +have a 32bit or 64bit hash returned, respectively. The later one being made of +the main hash for the lower bits and second hash for the higher bits of the +returned 64bit hash. + +Both will use `dlen << 2` as initial seed value, and `0` as second seed value +(for `lookup64`()) + +# RETURN VALUES + +The `hlookup32`() function returns a 32bit hash, the `hlookup64`() function +returns a 64bit hash. diff --git a/include/limb/hlookup.h b/include/limb/hlookup.h new file mode 100644 index 0000000..9f63016 --- /dev/null +++ b/include/limb/hlookup.h @@ -0,0 +1,11 @@ +#ifndef LIMB_HLOOKUP_H +#define LIMB_HLOOKUP_H + +#include <string.h> /* size_t */ +#include "limb/int.h" + +extern void hlookup(u32 *main, u32 *second, const void *data, size_t dlen); +extern u32 hlookup32(const void *data, size_t dlen); +extern u64 hlookup64(const void *data, size_t dlen); + +#endif /* LIMB_HLOOKUP_H */ diff --git a/meta/AUTHORS b/meta/AUTHORS index 7f8bd96..9b10f1c 100644 --- a/meta/AUTHORS +++ b/meta/AUTHORS @@ -3,6 +3,7 @@ Main author: Contributors: * Aleksey Kravchenko <rhash.admin@gmail.com> [sha3] +* Bob Jenkins [hlookup] * Samuel Neves [blake3] * Jack O'Connor [blake3] * Jonas Borgström <jonas@borgstrom.se> & The Borg Collective [nextsplit_buz] diff --git a/meta/libs/limb b/meta/libs/limb index a5f43aa..dee4e65 100644 --- a/meta/libs/limb +++ b/meta/libs/limb @@ -25,6 +25,10 @@ obj/saencdata.o obj/nextsplit_ae.o obj/nextsplit_buz.o obj/nextsplit_rabin.o +# hlookup hash +obj/hlookup.o +obj/hlookup32.o +obj/hlookup64.o # SHA3 obj/sha3/byte_order.o obj/sha3/rhash_sha3_process_block.o diff --git a/src/hlookup.c b/src/hlookup.c new file mode 100644 index 0000000..c6ade00 --- /dev/null +++ b/src/hlookup.c @@ -0,0 +1,326 @@ +#include "limb/hlookup.h" +#include "config.h" + +#if LIMB_ENDIAN == LIMB_LITTLE +# define HASH_LITTLE_ENDIAN 1 +#else +# define HASH_LITTLE_ENDIAN 0 +#endif + +/* This is hashlittle2() by Bob Jenkins, May 2006, Public Domain + * + * These are functions for producing 32-bit hashes for hash table lookup. + * You can use this free for any purpose. It's in the public domain. It has no + * warranty. + * + * If you want to find a hash of, say, exactly 7 integers, do + * a = i1; b = i2; c = i3; + * mix(a,b,c); + * a += i4; b += i5; c += i6; + * mix(a,b,c); + * a += i7; + * final(a,b,c); + * then use c as the hash value. + * + * Why is this so big? I read 12 bytes at a time into 3 4-byte integers, + * then mix those integers. This is fast (you can do a lot more thorough + * mixing with 12*3 instructions on 3 integers than you can with 3 instructions + * on 1 byte), but shoehorning those bytes into integers efficiently is messy. + */ + + +#define rot(x,k) ( ((x) << (k)) | ( (x) >> (32 - (k)) ) ) + +/* mix 3 32-bit values reversibly. + * + * This is reversible, so any information in (a,b,c) before mix() is still in + * (a,b,c) after mix(). + * + * If four pairs of (a,b,c) inputs are run through mix(), or through mix() in + * reverse, there are at least 32 bits of the output that are sometimes the same + * for one pair and different for another pair. This was tested for: + * * pairs that differed by one bit, by two bits, in any combination of top bits + * of (a,b,c), or in any combination of bottom bits of (a,b,c). + * * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed the + * output delta to a Gray code (a^(a>>1)) so a string of 1's (as is commonly + * produced by subtraction) look like a single 1-bit difference. + * * the base values were pseudorandom, all zero but one bit set, or all zero + * plus a counter that starts at zero. + * + * Some k values for my "a-=c; a^=rot(c,k); c+=b;" arrangement that satisfy this + * are : + * 4 6 8 16 19 4 + * 9 15 3 18 27 15 + * 14 9 3 7 17 3 + * Well, "9 15 3 18 27 15" didn't quite get 32 bits diffing for "differ" defined + * as + with a one-bit base and a two-bit delta. I used + * http://burtleburtle.net/bob/hash/avalanche.html to choose the operations, + * constants, and arrangements of the variables. + * + * This does not achieve avalanche. There are input bits of (a,b,c) that fail + * to affect some output bits of (a,b,c), especially of a. The most thoroughly + * mixed value is c, but it doesn't really even achieve avalanche in c. + * + * This allows some parallelism. Read-after-writes are good at doubling the + * number of bits affected, so the goal of mixing pulls in the opposite + * direction as the goal of parallelism. I did what I could. Rotates seem to + * cost as much as shifts on every machine I could lay my hands on, and rotates + * are much kinder to the top and bottom bits, so I used rotates. + */ +#define mix(a,b,c) \ +{ \ + a -= c; a ^= rot(c, 4); c += b; \ + b -= a; b ^= rot(a, 6); a += c; \ + c -= b; c ^= rot(b, 8); b += a; \ + a -= c; a ^= rot(c,16); c += b; \ + b -= a; b ^= rot(a,19); a += c; \ + c -= b; c ^= rot(b, 4); b += a; \ +} + +/* final mixing of 3 32-bit values (a,b,c) into c + * + * Pairs of (a,b,c) values differing in only a few bits will usually produce + * values of c that look totally different. This was tested for * pairs that + * differed by one bit, by two bits, in any combination of top bits of (a,b,c), + * or in any combination of bottom bits of (a,b,c). + * * "differ" is defined as +, -, ^, or ~^. For + and -, I transformed the + * output delta to a Gray code (a^(a>>1)) so a string of 1's (as is commonly + * produced by subtraction) look like a single 1-bit difference. + * * the base values were pseudorandom, all zero but one bit set, or all zero + * plus a counter that starts at zero. + * + * These constants passed: + * 14 11 25 16 4 14 24 + * 12 14 25 16 4 14 24 + * and these came close: + * 4 8 15 26 3 22 24 + * 10 8 15 26 3 22 24 + * 11 8 15 26 3 22 24 + */ +#define final(a,b,c) \ +{ \ + c ^= b; c -= rot(b,14); \ + a ^= c; a -= rot(c,11); \ + b ^= a; b -= rot(a,25); \ + c ^= b; c -= rot(b,16); \ + a ^= c; a -= rot(c, 4); \ + b ^= a; b -= rot(a,14); \ + c ^= b; c -= rot(b,24); \ +} + + +void +hlookup(u32 *main, u32 *second, const void *data, size_t dlen) +{ + u32 a, b, c; + /* needed for Mac Powerbook G4 */ + union { const void *ptr; size_t i; } u; + + /* Set up the internal state */ + a = b = c = 0xdeadbeef + (u32) dlen + *main; + if (second) + c += *second; + + u.ptr = data; + if (HASH_LITTLE_ENDIAN && ((u.i & 0x3) == 0)) { + /* read 32bit chunks */ + const u32 *k = (const u32 *) data; + + /* all but last block: aligned reads and affect 32 bits of (a,b,c) */ + while (dlen > 12) { + a += k[0]; + b += k[1]; + c += k[2]; + mix(a,b,c); + dlen -= 12; + k += 3; + } + + /* handle the last (probably partial) block */ +#ifndef VALGRIND + /* "k[2] & 0x00ffffff" actually reads beyond the end of the data, but + * then masks off the part it's not allowed to read. Because the data + * is aligned, the masked-off tail is in the same word as the rest of + * it. Every machine with memory protection I've seen does it on word + * boundaries, so is OK with this. But VALGRIND will still catch it and + * complain. The masking trick does make the hash noticably faster for + * short data (e.g. English words). + */ + switch(dlen) { + case 12: c += k[2]; b += k[1]; a += k[0]; + break; + case 11: c += k[2] & 0x00ffffff; b += k[1]; a += k[0]; + break; + case 10: c += k[2] & 0x0000ffff; b += k[1]; a += k[0]; + break; + case 9: c += k[2] & 0x000000ff; b += k[1]; a += k[0]; + break; + case 8: b += k[1]; a += k[0]; + break; + case 7: b += k[1] & 0x00ffffff; a += k[0]; + break; + case 6: b += k[1] & 0x0000ffff; a += k[0]; + break; + case 5: b += k[1] & 0x000000ff; a += k[0]; + break; + case 4: a += k[0]; + break; + case 3: a += k[0] & 0x00ffffff; + break; + case 2: a += k[0] & 0x0000ffff; + break; + case 1: a += k[0] & 0x000000ff; + break; + case 0: + /* zero length strings require no mixing */ + *main = c; + if (second) + *second = b; + return; + } +#else + /* make valgrind happy - read 8bit chunks */ + const u8 *k8 = (const u8 *) k; + switch(dlen) { + case 12: c += k[2]; b += k[1]; a += k[0]; + break; + case 11: c += ((u32) k8[10]) << 16; + /* fall through */ + case 10: c += ((u32) k8[ 9]) << 8; + /* fall through */ + case 9: c += k8[8]; + /* fall through */ + case 8: b += k[1]; a += k[0]; + break; + case 7: b += ((u32) k8[6]) << 16; + /* fall through */ + case 6: b += ((u32) k8[5]) << 8; + /* fall through */ + case 5: b += k8[4]; + /* fall through */ + case 4: a += k[0]; + break; + case 3: a += ((u32) k8[2]) << 16; + /* fall through */ + case 2: a += ((u32) k8[1]) << 8; + /* fall through */ + case 1: a += k8[0]; + break; + case 0: + /* zero length strings require no mixing */ + *main = c; + if (second) + *second = b; + return; + } +#endif /* VALGRIND */ + } else if (HASH_LITTLE_ENDIAN && ((u.i & 0x1) == 0)) { + /* read 16-bit chunks */ + const u16 *k = (const u16 *) data; + const u8 *k8; + + /* all but last block: aligned reads and different mixing */ + while (dlen > 12) + { + a += k[0] + (((u32) k[1]) << 16); + b += k[2] + (((u32) k[3]) << 16); + c += k[4] + (((u32) k[5]) << 16); + mix(a,b,c); + dlen -= 12; + k += 6; + } + + /* handle the last (probably partial) block */ + k8 = (const u8 *) k; + switch(dlen) { + case 12: c += k[4] + (((u32) k[5]) << 16); + b += k[2] + (((u32) k[3]) << 16); + a += k[0] + (((u32) k[1]) << 16); + break; + case 11: c += ((u32) k8[10]) << 16; + /* fall through */ + case 10: c += k[4]; + b += k[2] + (((u32) k[3]) << 16); + a += k[0] + (((u32) k[1]) << 16); + break; + case 9 : c += k8[8]; + /* fall through */ + case 8 : b += k[2] + (((u32) k[3]) << 16); + a += k[0] + (((u32) k[1]) << 16); + break; + case 7 : b += ((u32) k8[6]) << 16; + /* fall through */ + case 6 : b += k[2]; + a += k[0] + (((u32) k[1]) << 16); + break; + case 5 : b += k8[4]; + /* fall through */ + case 4 : a += k[0] + (((u32) k[1]) << 16); + break; + case 3 : a += ((u32) k8[2]) << 16; + /* fall through */ + case 2 : a += k[0]; + break; + case 1 : a += k8[0]; + break; + case 0 : + /* zero length strings require no mixing */ + *main = c; + if (second) + *second = b; + return; + } + } else { + /* need to read the key one byte at a time */ + const u8 *k = (const u8 *) data; + + /* all but the last block: affect some 32 bits of (a,b,c) */ + while (dlen > 12) + { + a += k[0]; + a += ((u32) k[ 1]) << 8; + a += ((u32) k[ 2]) << 16; + a += ((u32) k[ 3]) << 24; + b += k[4]; + b += ((u32) k[ 5]) << 8; + b += ((u32) k[ 6]) << 16; + b += ((u32) k[ 7]) << 24; + c += k[8]; + c += ((u32) k[ 9]) << 8; + c += ((u32) k[10]) << 16; + c += ((u32) k[11]) << 24; + mix(a,b,c); + dlen -= 12; + k += 12; + } + + /* last block: affect all 32 bits of (c) */ + switch(dlen) { + /* all the case statements fall through until 0 */ + case 12: c += ((u32) k[11]) << 24; + case 11: c += ((u32) k[10]) << 16; + case 10: c += ((u32) k[ 9]) << 8; + case 9: c += k[ 8]; + case 8: b += ((u32) k[ 7]) << 24; + case 7: b += ((u32) k[ 6]) << 16; + case 6: b += ((u32) k[ 5]) << 8; + case 5: b += k[ 4]; + case 4: a += ((u32) k[ 3]) << 24; + case 3: a += ((u32) k[ 2]) << 16; + case 2: a += ((u32) k[ 1]) << 8; + case 1: a += k[ 0]; + break; + case 0 : + /* zero length strings require no mixing */ + *main = c; + if (second) + *second = b; + return; + } + } + + final(a,b,c); + *main = c; + if (second) + *second = b; +} diff --git a/src/hlookup32.c b/src/hlookup32.c new file mode 100644 index 0000000..437e5c1 --- /dev/null +++ b/src/hlookup32.c @@ -0,0 +1,9 @@ +#include "limb/hlookup.h" + +u32 +hlookup32(const void *data, size_t dlen) +{ + u32 h = dlen << 2; + hlookup(&h, NULL, data, dlen); + return h; +} diff --git a/src/hlookup64.c b/src/hlookup64.c new file mode 100644 index 0000000..8064811 --- /dev/null +++ b/src/hlookup64.c @@ -0,0 +1,11 @@ +#include "limb/hlookup.h" + +u64 +hlookup64(const void *data, size_t dlen) +{ + u32 h, hh; + h = dlen << 2; + hh = 0; + hlookup(&h, &hh, data, dlen); + return (u64) h + ((u64) hh << 32); +}